

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

Subject Code: 2140909 Date: 14/12/2019

Subject Name: Field Theory

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Define scalar Field and Vector field with proper example.	03
C	(b)	In Free Space $V = x^2y(z+3)$ Find V and E at point (3,4,-6)	04
	(c)	Explain Spherical co-ordinate system. Also give expression of differential elements in the system.	07
		cienients in the system.	
Q.2	(a)	Write mathematical Expression of Divergence in rectangle co-ordinate system. Explain physical meaning of Divergence.	03
	(b)	State and Explain Stokes' theorem.	04
	(c)	Derive Maxwell's first equation as applied to the electrostatics, using Gauss's law.	07
OR			
	(c)	Derive expression of electric field intensity due to an infinite line charge over z-axis having a uniform charge density of ρ_L C/m.	07
Q.3	(a)	Explain concept of dot product and cross product.	03
•	(b)	Explain concept of magnetic torque.	04
	(c)	If a particular Field is given by,	07
		$\mathbf{F} = (x + 3y + az)a_x + (bx + 2y + z)a_y + (4x + cy + 2z)a_z,$	
		Than Find the constant a,b,c such that the Field is irrotational. OR	
Q.3	(a)	Write Maxwell's equations for steady field in integral and differential	03
C	()	form.	
	(b)	Explain Electrical field as the Gradient of the electrical potential.	04
	(c)	Two uniform line charges of Density ρ_L =4nC/m lie in the x=0 plane at	07
		$y = \pm 4$ m. Find E at (4,0,10)	
Q.4	(a)	Explain Characteristics impedance and propagation constant of the transmission line.	03
	(b)	Explain EMI control techniques.	04
	(c)	Discuss poisson's and Laplace Equation OR	07
Q.4	(a)	Write any three equations which Shows current density- J and field	03
Q.7	(a)	density- D are Dual.	
	(b)	Explain polarization with reference to dielectrics.	04
	(c)	Derive equation for lossless transmission line.	07
Q.5	(a)	State and explain source of EMI.	03
	(b)	Find the displacement current within a parallel plate capacitor where	04
		$\varepsilon = 100\varepsilon_0$, $A = 0.01\text{m}^2$, $d = 0.05\text{ mm}$ and	
	(a)	the capacitor voltage is 100 sin (2000πt) volts.	07
	(c)	State and Explain Ampere Circuital Law both in integral and differential form.	07

www.FirstRanRer.com www.FirstRanker.com **Q.5**

- (a) Explain Physical significance of displacement Current.
 - Explain conduction current density and displacement current Density. 04 **07** (c)
 - The magnetic field intensity is given in certain region of space as $\overrightarrow{H} = \left[\frac{(x+2y)}{z^2} \right] \overrightarrow{a}_y + \frac{2}{z} \overrightarrow{a}_z$ A/m. Find **1.** $\nabla \times \overrightarrow{H}$ **2.** \overrightarrow{J} **3.**Use \overrightarrow{J} to find

the total current passing through the surface Z= 4, $1 \le x \le 2$, $3 \le y \le 5$. In \vec{a}_z direction

MMM.FirstRanker.com