Ranker.<mark>com</mark> ker's choice

www.FirstRanker.com

Enro WWW.FirstRanker.com

Date: 17/12/2019

Total Marks: 70

MARKS 03

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

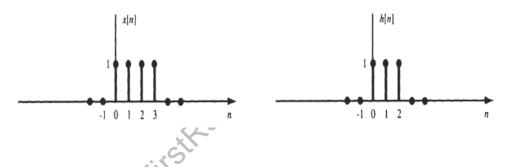
Subject Code: 2141005

Subject Name: Signals and Systems

Time: 10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** Consider an analog pulse **(a)**


$x(t) = \begin{cases} 1 \\ 0 \end{cases}$ $0 \le t \le 1$ Otherwise

Find mathematical expression for x(t) delayed by 2, advanced by 2, and the reflected signal x(-t).

(b) Determine whether or not the following signals is periodic. If a signal is 04 periodic, determine its fundamental period.

i.
$$x(t) = \cos t + \sin\sqrt{2} t$$

ii. $x[n] = e^{j(\frac{\pi}{4})n}$

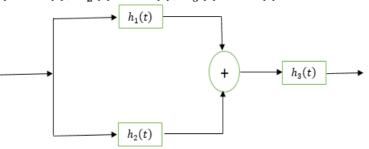
Evaluate y[n] = x[n] * h[n], by graphical method. where x[n] and h[n]07 (c) are shown figure below.

Determine the energy and power of a unit step signal. Q.2 03 (a)

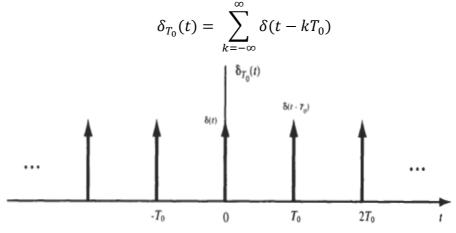
Consider a discrete-time LTI system with impulse response h[n] given by **(b)** $h[n] = \alpha^n u[n]$

- Is this system causal? i.
- Is this system BIBO stable? ii.
- Determine natural response of the first order system governed by the 07 (c) equation,

$$\frac{dy(t)}{dt} + 3y(t) = x(t); y(0) = 2$$


OR

1


04

FirstRanker.com

irstrace Find the overall impulse representative scotten shown in figure in the sector shown in the secto

- **Q.3** (a) Find the Laplace transform of $x(t) = sin^2 t$.
 - (b) Determine the complex exponential Fourier series representation for the 04 signals $x(t) = \cos\left(2t + \frac{\pi}{4}\right)$.
 - (c) Determine the trigonometric Fourier series of periodic impulse train 07

OR

Q.3	(a)	State and prove the frequency differentiation property of Fourier transform.	03			
	(b)	Find the Fourier transform of	04			
		$x(n) = \{2, 1, 2\}.$				
	(c)	Determine the frequency response of the LTI system defined by,	07			
		y(n) = x(n) + by(n-1)				
Q.4	(a)	Determine the z-transform of	03			
		x(n) = (n-3)u(n)				
	(b)	State and prove shifting property for one sided z-transform.	04			
	(c)	Determine the inverse z-transform of	07			
		$X(z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}}$ for ROC, $ z > 0.6$.				
		$1 - 0.8z^{-1} + 0.12z^{-2}$				
	OR					
Q.4	(a)	Find the even part of signal	03			
	x(n) = u(n) + u(-n).					
	(b)	Determine the inverse z-transform of	04			
		$X(z) = \log(1 + az^{-1})$; $ z > a $.				
	(c)	Determine the impulse response $h(n)$ for the system described by the second	07			
		order difference equation,				
		y(n) - 4y(n-1) + 4y(n-2) = x(n-1)				
Q.5	(a)	Test the following systems for linearity.	03			
		$y(t) = 4x(t) + 2\frac{dx(t)}{dt}.$				
	(b)	State and prove the time scaling property of Laplace transform.	04			
			~ -			

(c) A system has impulse response h(n) given by,

www.FirstRanker.com

2

07

03

First	ranke	r's choice	$h(n) = w_{W}^{25}$ First Ranker Som -0.25 www. First Ranker.co	m
		i.	Is the system BIBO stable?	
		ii.	Is the system causal? Justify your answer.	
			OR	
Q.5	(a)	i. Define Fourier transform.		03
-		ii. State the	e condition for existence of Fourier integral.	

(b) Calculate the DFT of the sequence, 04

$$x(n) = \{1, 1, -2, -2\}$$

(c) Define ROC for z-transform. List the property of ROC. 07

www.FirstRanker.com