GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

Subject Code: 2141005
Date: 17/12/2019
Subject Name: Signals and Systems
Time: 10:30 AM TO 01:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Consider an analog pulse

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t \leq 1 \\
0 & \text { Otherwise }
\end{array}\right.
$$

Find mathematical expression for $x(t)$ delayed by 2 , advanced by 2 , and the reflected signal $x(-t)$.
(b) Determine whether or not the following signals is periodic. If a signal is periodic, determine its fundamental period.
i. $\quad x(t)=\cos t+\sin \sqrt{2} t$
ii. $\quad x[n]=e^{j\left(\frac{\pi}{4}\right) n}$
(c) Evaluate $y[n]=x[n] * h[n]$, by graphical method. where $x[n]$ and $h[n]$ are shown figure below.

Q. 2 (a) Determine the energy and power of a unit step signal. 03
(b) Consider a discrete-time LTI system with impulse response $h[n]$ given by

$$
\begin{equation*}
h[n]=\alpha^{n} u[n] \tag{04}
\end{equation*}
$$

i. Is this system causal?
ii. Is this system BIBO stable?
(c) Determine natural response of the first order system governed by the $\mathbf{0 7}$ equation,

$$
\frac{d y(t)}{d t}+3 y(t)=x(t) ; y(0)=2
$$

OR

Take, $h_{1}(t)=t u(t) ; h_{2}(t)=3 u(t) ; h_{3}(t)=2 u(t) ;$

Q. 3 (a) Find the Laplace transform of $x(t)=\sin ^{2} t$.
(b) Determine the complex exponential Fourier series representation for the
signals $x(t)=\cos \left(2 t+\frac{\pi}{4}\right)$.
(c) Determine the trigonometric Fourier series of periodic impulse train

$$
\delta_{T_{0}}(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{0}\right)
$$

OR

Q. 3 (a) State and prove the frequency differentiation property of Fourier transform.
(b) Find the Fourier transform of

$$
x(n)=\{2,1,2\} .
$$

(c) Determine the frequency response of the LTI system defined by,

$$
y(n)=x(n)+b y(n-1)
$$

Q. 4 (a) Determine the z-transform of

$$
x(n)=(n-3) u(n)
$$

(b) State and prove shifting property for one sided z-transform.04

(c) Determine the inverse z-transform of

$$
X(z)=\frac{1}{1-0.8 z^{-1}+0.12 z^{-2}} \text { for ROC, }|z|>0.6
$$

OR

Q. 4 (a) Find the even part of signal

$$
x(n)=u(n)+u(-n)
$$

(c) Determine the impulse response $\mathrm{h}(\mathrm{n})$ for the system described by the second order difference equation,

$$
y(n)-4 y(n-1)+4 y(n-2)=x(n-1)
$$

Q. 5 (a) Test the following systems for linearity.

$$
y(t)=4 x(t)+2 \frac{d x(t)}{d t}
$$

(b) State and prove the time scaling property of Laplace transform.
(c) A system has impulse response $\mathrm{h}(\mathrm{n})$ given by,
i. Is the system BIBO stable?
ii. Is the system causal? Justify your answer.

OR
Q. 5 (a) i. Define Fourier transform. 03
ii. State the condition for existence of Fourier integral.
(b) Calculate the DFT of the sequence, 04 $x(n)=\{1,1,-2,-2\}$
(c) Define ROC for z-transform. List the property of ROC.

