

www.FirstRanker.com

Enrolwent. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (SPFU) EXAMINATION – WINTER 2019 Subject Code: ENG004 Date: 02/01/2020

Subject Name: Mechanics Of Solids

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.

Q.1	(a) (b)	Define Force and classify the force system with neat sketch. Draw bending moment diagram and shear force diagram for a simply 07 supported beam of length 'L', subjected to udl of 'w' kN/m throughout the length and 'W' at the center of a beam.	07 07
Q.2	(a)	i) Define : Angle of Repose.	07
		ii) State and explain the Laws of Static friction.	
	(b)	Derive the relation between shear force and bending moment.	07
Q.3	(a)	Define: (i) Vector quantities (ii) Resolution of force (iii) Couple	07
	(b)	An M. S. bar of 25 mm diameter and change in length is 0.1 m acted upon by a tensile force of 100 kN. If the length of bar is 1.2 m and modulus of elasticity is $2.0 \times 10^5 \text{ N/mm}^2$. Find stress, strain and elongation of the bar.	07
Q.4	(a)	For a bar shown in figure.1 find the diameter of the middle portion, if the stress at that location is to be limited to 140 N/mm ² . Also find the total change in the length of the bar. $E = 2 \times 10^5 N/mm^2$	07
	(b)	Determine the support reactions of a cantilever beam having length 'L' subjected to point load 'W' at tip and 'W/2' at the center of a beam.	07
Q.5	(a)	 Determine the horizontal force required to cause the motion of the block weighing 550N as shown in fig.2. Take μ= 0.55. a. To impend the motion downward. b. To impend up the plane. 	07
	(b)	State the condition of equilibrium for Co-planner force system.	07
Q.6	(a)	Find out centroid of thin homogeneous wire as shown in figure 3.	07
	(b)	Derive relation between bulk modulus (K), Poisson's ratio (1/m), and modulus of elasticity (E).	07
Q.7	(a)	Draw the Shear force and Bending Moment diagram of Beam given in Fig. 4	07
	(b)	i) Define: Coefficient of Static Friction and state the Laws of Friction.ii) Define: 1]Point of Contra flexure, 2] Shear force	07

www.FirstRanker.com

www.FirstRanker.com

Fig. 1

