Enrolment No.

BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

Subject Code: 2141307
Date: 12/12/2019

Subject Name: Basics of Environmental Hydraulics
 Time: 10:30 AM TO 01:00 PM
 Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.
Q. 1 (a) Compare steady, unsteady, uniform and non-uniform flow. 03
(b) Write a short note on differential U-Tube Manometer. 04
(c) Explain the different types of fluids with figure. 07
Q. 2 (a) Derive equation for Newton's Law of Viscosity. 03
(b) State and prove Pascal's Law. 04
(c) Derive an expression for equation of continuity in a 3D flow in Cartesian co- 07 ordinates system.

OR

(c) Derive an expression for Euler's equation of motion.
Q. 3 (a) Define: (i) Specific Weight (ii) Rotational Flow (ii) Atmospheric Pressure 03
(b) Discuss the concept of center of pressure. 04
(c) Give the classification of various energy (Major \& Minor) losses in pipe. 07

OR
Q. 3 (a) Define: (i) Mass density (ii) Laminar flow (iii) Absolute Pressure 03
(b) A vertical isosceles (two sides are same) triangular gate with its vertex up has $\mathbf{0 4}$ a base width 1 m and height 1.5 m . If the vertex of the gate is 1 m below the free water surface, find (i) pressure force (ii) center of pressure.
(c) Derive the formula for loss of head due to sudden enlargement.
Q. 4 (a) Explain the EGL and HGL. 03
(b) A rectangular channel of width 4 m is having a bed slope of 1in 1500 . Find the $\mathbf{0 4}$ maximum discharge through the channel. Take value of $\mathrm{C}=50$.
(c) The water is flowing through a tapering pipe having diameter 250 mm and 125 mm at section 1 and 2 respectively. The discharge through the pipe is 30 liters $/ \mathrm{sec}$. the section 1 is 9 m above datum and section 2 is 5 m above datum. Determine the intensity of pressure at section 2 if that at section 1 is $450 \mathrm{kN} / \mathrm{m}^{2}$.

OR

Q. 4 (a) What is mouthpiece? Give the classification of mouthpiece. 03
(b) Explain the concept of velocity approach. $\mathbf{0 4}$
(c) A horizontal Venturimeter with inlet diameter 150 mm and throat diameter $75 \mathbf{0 7}$ mm is employed to measure the discharge of water. The differential manometer connected to the inlet gives reading of 150 mm of mercury. Determine the rate of flow if the co-efficient of discharge is 0.98 .
Q. 5 (a) A rectangular notch 2 m wide has a constant head of 500 mm . Find the $\mathbf{0 3}$ discharge over the notch, if $\mathrm{C}_{\mathrm{d}}=0.62$.
(b) What are the differences between closed and open channel flow? $\mathbf{0 4}$
(c) Define large orifice. How is the discharge is calculated through large orifice?
Q. 5 (a) Determine the time required to lower the water level form 4 m to 3 m in a reservoir of dimensions 80 mX 80 m , by a rectangular notch of length 1 m . Take $\mathrm{Cd}=0.62$.
(b) Differentiate between Notch \& Weir.

