FirstRanker.com

www.FirstRanker.com

Enrolwent. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV (New) EXAMINATION – WINTER 2019

Subject Code: 2141708

Date: 10/12/2019

Subject Name: Control System

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Introduce stability of the systems.	03 04
	(b) (c)	Explain mathematical modeling of armature controlled DC servomotors.	0 7
Q.2	(a)	Explain importance of Eigen values.	03
	(b)	Write benefits of closed loop system over open loop system.	04
	(c)	Mention difference between transfer function approach and state space approach.	07
		OR	
	(c)	With suitable example explain modeling in state space.	07
Q.3	(a)	Discuss about frequency response analysis using polar plot.	03
	(b)	Determine the stability using Routh Criterion.	04
		$s^4 + 5s^3 + 20s^2 + 50s + 40 = 0$	
	(c)	Draw second order unit step response and explain associated	07
		specification terms.	
		OR	
Q.3	(a)	Give difference between transient and steady state response with	03
		suitable example.	
	(b)	Define following terms:	04
		i. Rise time	
		ii. Settling time	
		iii. Distributed parameter system	
		iv. Time variant control system	
	(c)	Find the transfer function and develop $F \rightarrow V$ analogy for system shown in	07
		figure. Write necessary equations.	
		К2	
		M1 $M2$ $M3$ $M3$	

Q.4 (a) Discuss application of Nichol chart. (b) Sketch root locus for following open loop transfer function $G(s) = \frac{k}{s(s+4)}$ 03 04

FirstRanker.com

www.FirstRanker.coff7

$$G(s)H(s) = \frac{10(s+10)}{s(s+2)(s+30)}$$

OR

- Q.4 (a) Briefly write about constant M, N circles. (b) Apply Nyquist stability criterion for the stability analysis of the following unity feedback system. $G(s)H(s) = \frac{s+3}{(s+1)(s-1)}$ (c) Draw root locus for following transfer function $G(s)H(s) = \frac{k}{s^2(s+1)}$ Q.5 (a) Give importance of gain margin and phase margin in frequency response Q3
- Q.5 (a) Give importance of gain margin and phase margin in frequency response 03 analysis.
 - (b) Find transfer function of following system using block diagram reduction 04 method.

(c) Using mason gain formula find transfer function for system shown in figure

- **Q.5** (a) Define and introduce state transition matrix.
 - (b) Write about linear versus nonlinear systems.
 - (c) What is steady state error? Derive value of steady state error for type 2 07 system with ramp input.

07

03

04