GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) EXAMINATION - WINTER 2019

Subject Code: 2141905
Date: 07/12/2019
Subject Name: Complex Variables and Numerical Methods
Time: 10:30 AM TO 01:30 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q-1 (a)
Determine whether the function $\left\{\begin{array}{cl}\frac{z^{2}+3 i z-2}{z+i} & ; z \neq-i \\ 5 & ; z=-i\end{array}\right.$ is continuous?
Can the function be redefined to make it continuous at $z=-i$?
(b) State De Moivre's Theorem. Find the roots of the equation $z^{4}+1=0$.
(c) Solve the following system of equations using Gauss Seidel Method correct to four decimal places.

$$
30 x-2 y+3 z=75 ; 2 x+2 y+18 z=30 ; x+17 y-2 z=48
$$

Q-2 (a) Check whether the function $f(z)=e^{z^{2}}$ is entire or not. Also find derivative of $f(z)$.
(b) Find the bilinear transformation which maps $z=1,0,-1$ into the points $w=$ $i, \infty, 1$.
(c) Using the Residue Theorem Evaluate, $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$

OR
(c) Show that the function $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic. Find the conjugate harmonic function v and express $u+i v$ as analytic function of z

Q-3 (a) Evaluate $\oint_{C} \frac{z^{2}+1}{z^{2}-1} d z$ if c is the circle of unit radius with centre at $z=1$.
(b) Find the real part and imaginary part of $\sqrt{i}^{\sqrt{i}}$
(c) Evaluate $\int f(z) d z$ where $f(z)$ is defined by

$$
f(z)=\left\{\begin{array}{c}
1 \text { when } y<0 \\
4 y \text { when } y>0
\end{array}\right.
$$

And C is the arc from $z=-1-i$ to $z=1+i$ along the curve $y=x^{3}$.
 transformation $W=\frac{1}{z}$
(c) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ valid for region
(i) $|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$

Q-4 (a) Use Euler's Method, find $y(0.2)$ given that $\frac{d y}{d x}=x-y^{2} ; y(0)=1$ take $h=0.1$
(b) Evaluate $\sqrt{8}$ to two decimal places by Newton's iterative formula.
(c) Determine the polynomial by Newton's forward difference formula from the following table

x	0	1	2	3	4	5
y	-10	-8	-8	-4	10	40
OR						

Q-4 (a) Solve the following system ofequation using Gauss Elimination Method

$$
x+y+z=7 ; 3 x+3 y+4 z=24 ; \quad 2 x+y+3 z=16
$$

(b) Use Secant Method to find the root of $f(x)=x \log _{10} x-1.9=0$
(c) Using Newton's Divided Differences formula to find a polynomial function, satisfying the following data.

x	-4	-1	0	2	5
$f(x)$	1245	33	5	9	1335

Q-5 (a) Evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ by using Gaussian formula for $n=2$ and $n=3$
(b) Use fourth order Range-Kutta method to compute $y(0.2)$ and $y(0.4)$ given that $\frac{d y}{d x}=y-\frac{2 x}{y} ; y(0)=1$.
(c) Find the dominant Eigen value of $A \pm\left[\begin{array}{cc}3 & -5 \\ -2 & 4\end{array}\right]$ by Power Method and the corresponding Eigen vector.

OR

Q-5 (a) State Trapezoidal Rule and evaluate $\int_{0}^{1} e^{x} d x$ using it with $n=10$
(b) Use Lagrange's formula to fit a polynomial to the data

x	-1	0	2	3
y	8	3	1	12

(c) Apply improved Euler's method to solve the initial value problem

