

www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

Subject Code: 2141905 Date: 07/12/2019

Subject Name: Complex Variables and Numerical Methods

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q-1 (a) Determine whether the function $\left\{\frac{z^2+3iz-2}{z+i}; z \neq -i \text{ is continuous?} \right\}$ 03

Can the function be redefined to make it continuous at z = -i?

- (b) State De Moivre's Theorem. Find the roots of the equation $z^4 + 1 = 0$.
- (c) Solve the following system of equations using Gauss Seidel Method correct to four decimal places.

$$30x - 2y + 3z = 75$$
; $2x + 2y + 18z = 30$; $x + 17y - 2z = 48$

- Q-2 (a) Check whether the function $f(z) = e^{z^2}$ is entire or not. Also find derivative of f(z).
 - (b) Find the bilinear transformation which maps z = 1, 0, -1 into the points w = 0.0 i. ∞ , 1.
 - (c) Using the Residue Theorem Evaluate, $\int_0^{2\pi} \frac{d\theta}{5-3\sin\theta}$ 07

OR

- (c) Show that the function $u(x, y) = 3x^2y + 2x^2 y^3 2y^2$ is harmonic. Find the conjugate harmonic function v and express u + iv as analytic function of z
- Q-3 (a) Evaluate $\oint_C \frac{z^2+1}{z^2-1} dz$ if c is the circle of unit radius with centre at z=1.
 - (b) Find the real part and imaginary part of \sqrt{i}
 - (c) Evaluate $\int f(z)dz$ where f(z) is defined by

$$f(z) = \begin{cases} 1 & when \ y < 0 \\ 4y & when \ y > 0 \end{cases}$$

And C is the arc from z = -1 - i to z = 1 + i along the curve $y = x^3$.

OR

03

Q-3 (a) Find the type of singularity of the function $f(z) = \frac{e^{2z}}{(z-1)^4}$

Firstra(b) er sich olde Sketch the wegivi ForstRiafiker. com $1 < x$ www.ForstRanker.com	04
transformation $w = \frac{1}{2}$	

(c) Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 valid for region
(i) $|z| < 1$ (ii) $1 < |z| < 2$ (iii) $|z| > 2$

Q-4 (a) Use Euler's Method, find
$$y(0.2)$$
 given that $\frac{dy}{dx} = x - y^2$; $y(0) = 1$ take $h = 0.1$

- (b) Evaluate $\sqrt{8}$ to two decimal places by Newton's iterative formula.
- (c) Determine the polynomial by Newton's forward difference formula from the following table

'11	nowing those							
	х	0	1	2	3	4	5	
	у	-10	-8	-8	-4	10	40	

OR

04

07

07

03

04

Q-4 (a) Solve the following system of equation using Gauss Elimination Method
$$x + y + z = 7$$
; $3x + 3y + 4z = 24$; $2x + y + 3z = 16$

- (b) Use Secant Method to find the root of $f(x) = x \log_{10} x 1.9 = 0$
- (c) Using Newton's Divided Differences formula to find a polynomial function, satisfying the following data.

x	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

Q-5 (a) Evaluate
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$
 by using Gaussian formula for $n=2$ and $n=3$

- (b) Use fourth order Range-Kutta method to compute y(0.2) and y(0.4) given that $\frac{dy}{dx} = y \frac{2x}{y}$; y(0) = 1.
- (c) Find the dominant Eigen value of $A = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}$ by Power Method and the corresponding Eigen vector.

OR

Q-5 (a) State Trapezoidal Rule and evaluate
$$\int_0^1 e^x dx$$
 using it with $n = 10$

(b) Use Lagrange's formula to fit a polynomial to the data

.~, ~~		1	301)11011111111111111111111111111111111		
	x	-1	0	2	3
	3	8	3	1	12

(c) Apply improved Euler's method to solve the initial value problem y' = x + y with y(0) = 0 choosing h = 0.2 and compute $y_1, y_2, ..., y_5$.

www.FirstRanker.com