

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (SPFU) EXAMINATION - WINTER 2019

Subject Code: MTH002	·	•	Date: 07/01/2020
Subject Code. WITHOUZ		•	Date: 07/01/2020

Subject Name: Ordinary Differential Equation

Time: 10:30 AM TO 01:00 PM	Total Marks: 70
	_ 0 0001 1: _001

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Check whether the given differential equation is exact or not $(x^4 2xy^2 + y^4)dx (2x^2y 4xy^3 + \sin y)dy = 0$ Hence find the general solution.
 - (b) Find the orthogonal trajectories of the family of semi cubical parabolas $ay^2 = x^3$ 04
 - (c) Solve $y''-3y'+2y=e^x$ by using variation of Parameter method 07
- **Q.2** (a) Find the Wronskian of y_1, y_2 of $y'' 2y' + y = e^x \log x$
 - (b) Solve $\frac{dy}{dx} + y \sin x = e^{\cos x}$
 - (c) Using Method of undetermined Coefficient solve $y' + 4y = 8x^2$ 07
- **Q.3** (a) Find the orthogonal trajectories of cardioid $r = a(1 \cos \theta)$
 - **(b)** Find the Series solution of y'-2xy=0
- **Q.4** (a) Solve $x^2 y'' xy' + y = x$
 - (b) Discuss about Singular point and classify singular pints for the differential equation $x^3(x-1)y''+3(x-1)y'+7xy=0$
- Q.5 (a) Solve in Series the differential equation $4x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = 0$
 - (b) The population of a country increases at the proportional to the current population. if the population doubles in 40 years, in how many years will it triple itself.
- **Q.6** (a) Solve $(x^2y^2 + 2)ydx + (2 x^2y^2)xdy = 0$
 - (b) Solve $(D^2 1)y = xe^x$ where $D = \frac{d}{dx}$
- **Q.7** (a) Solve the initial value Problem y'' 9y = 0, y(0) = 2, y'(0) = -1
 - **(b)** If $y_1 = x$ is one solution of $x^2y'' + xy' y = 0$. Find the second solution
