

Enrolment No.\_\_\_\_\_

## GUJARAT TECHNOLOGICAL UNIVERSITY www.FirstRanker.com **BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019** Subject Code: 2142105 Date: 12/12/2019

| Sul<br>Sul<br>Tir   | bject<br>bject<br>ne: 1 | Name: Heat and Mass Transfer in Metallurgy   0:30 AM TO 01:00 PM   Total Marks: 70                                                                                                                                                                                                                     |                |
|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 11150               | 1.<br>2.<br>3.          | Attempt all questions.<br>Make suitable assumptions wherever necessary.<br>Figures to the right indicate full marks.                                                                                                                                                                                   |                |
| Q.1                 | (a)<br>(b)<br>(c)       | Define and classify fluids.<br>Explain Fick's first law of diffusion and derive unit for diffusivity.<br>Derive differential equation of momentum balance (Equation of motion) in<br>rectangular coordinate system.                                                                                    | 03<br>04<br>07 |
| Q.2                 | (a)<br>(b)<br>(c)       | Explain mass concentration, molar concentration, mass fraction & molar fraction.<br>Derive differential mass balance (Continuity Equation).<br>Derive differential equation for heat conduction in rectangular coordinate system.                                                                      | 03<br>04<br>07 |
| Q.3                 | (c)<br>(a)              | What are different type of fluid flows? Explain them.<br>If max. velocity of fluid flowing through pipe of diameter 20cm is 5m/sec & shear stress required to create flow is 20 N/m <sup>2</sup> . Calculate dynamic viscosity of fluid.                                                               | 07<br>03       |
|                     | (b)<br>(c)              | State Fourier law of heat conduction and derive units of thermal conductivity (k).<br>Derive Hagen-Poiseulle Equation for fluid flowing through pipe.<br><b>OR</b>                                                                                                                                     | 04<br>07       |
| Q.3                 | <b>(a)</b>              | Calculate discharge of fluid flowing through pipe of 20 cm radius and 5 m/sec velocity                                                                                                                                                                                                                 | 03             |
|                     | <b>(b)</b>              | For temperature difference of 200 <sup>0</sup> C for refractory thickness of 400 mm having thermal conductivity of 0.2 W/mK. Calculate heat flux.                                                                                                                                                      | 04             |
|                     | (c)                     | What is convective heat transfer? Discuss different modes of convective heat transfer.                                                                                                                                                                                                                 | 07             |
| Q.4                 | (a)                     | Determine temperature inside of furnace refractory wall of thickness 2000 mm having $k=0.15$ W/mK if outside temperature is 75 °C for heat flux of 100 W/m <sup>2</sup> .                                                                                                                              | 03             |
|                     | (b)<br>(c)              | From Euler's equation, derive Bernoulli's equation by integration.                                                                                                                                                                                                                                     | 04<br>07       |
| Q.4                 | (a)<br>(b)              | What is mass transfer? Briefly explain different modes of mass transfer.<br>State Newton's law of cooling and derive unit for coefficient of convective heat transfer (h).                                                                                                                             | 03<br>04       |
| Q.5                 | (c)<br>(a)              | Write note on Kirkindall effect.<br>For convective heat transfer condition if heat flux of 1500 W/m <sup>2</sup> and temperature                                                                                                                                                                       | 07<br>03       |
| -                   | ( <b>b</b> )            | difference of 30 <sup>o</sup> C. Calculate co-efficient of convective heat transfer (h).<br>A sphere of diameter 10 mm and emissivity 0.9 is maintained at 80 <sup>o</sup> C inside<br>oven with wall temperature of 400 <sup>o</sup> C. Calculate net heat transfer rate from oven<br>wall to object. | 04             |
|                     | (c)                     | What is emissive power, emissivity, black body, white body and gray body?                                                                                                                                                                                                                              | 07             |
| Q.5                 | (a)<br>(b)              | Briefly explain pseudo steady diffusion.<br>What is radiative heat transfer? How it is different than conductive & convective heat transfer?                                                                                                                                                           | 03<br>04       |
|                     | ( <b>c</b> )            | State and explain plank's law, wein's law,                                                                                                                                                                                                                                                             | 07             |
|                     |                         | ******                                                                                                                                                                                                                                                                                                 | 1              |
| www.FirstRanker.com |                         |                                                                                                                                                                                                                                                                                                        | 1              |