GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (New) EXAMINATION - WINTER 2019

Subject Code: 2143507
Date: 16/12/2019
Subject Name: Fundamentals of Stoichiometry
Time: 10:30 AM TO 01:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Abstract

Q. 1 (a) Explain Raoult's law. (b) The gaseous reaction $\mathrm{A}=2 \mathrm{~B}+\mathrm{C}$ takes place isothermally in a constant- pressure reactor. Starting with a mixture of $75 \% \mathrm{~A}$ and 25 \% inerts (by volume), in a specified time the volume double. (c) Calculate the heat of reaction for the esterification of ethyl alcohol with acetic acid if the standard heats of combustion are : ethyl alcohol: - $1366.91 \mathrm{~kJ} / \mathrm{mol}$, acetic acid: $-871.69 \mathrm{~kJ} / \mathrm{mol}$, ethyl acetate: -2274 kJ/mol

MARKS

Q. 2 (a) Differentiate between: Endothermic and exothermic reactions. 03
(b) Prove that, mole fraction $=$ Volume fraction $=$ Pressure fraction. 04
(c) A solution of sodium chloride in water contains $25 \% \mathrm{NaCl}$ (by mass) at 333 K . The density of the solution is $1.129 \mathrm{~kg} / \mathrm{L}$. Find the molarity, normality and molality of the solution. Atomic mass: Na: 23, Cl:35.5
OR
(c) Calculated the enthalpy of zinc vapour at $1200{ }^{\circ} \mathrm{C}$ and atmosphere 07
03
Q. 3 (a) Explain Recycle, Purge, bypass with suitable diagram 04containing 15% caustic by weight and is concentrated to get thickliquor containing 40% by weight caustic (NaOH). Calculate (a).$\mathrm{Kg} / \mathrm{hr}$ of water evaporated (b) $\mathrm{kg} / \mathrm{hr}$ of thick liquor obtained
(c) Iron pyrite is burned in 50% excess air. The following reaction07occurs: $4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2}-----2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$ For 100 kg of iron pyritecharged, calculate following: a) The amount of air supplied in kg . b)The composition of exit gases if the percent conversion of iron pyriteis 70%
OR
Q. 3 (a) Explain: Limiting Reactant, Excess reactant and percent conversion. 03
(b) Explain : (1) Wet bulb temperature (2) Absolute humidity 04
(c) 1 kg nitrogen is mixed with 3.5 m 3 of hydrogen at 300 K and 101.3 07kPa and sent to the ammonia converter. The product leaving theconverter analyzed 13.7% ammonia, 70.32% hydrogen and 15.98$\%$ nitrogen. i. Identity the limiting reactant. ii. What is the present
 limiting reactant?
Q. 4 (a) Define: (1) single pass conversion (2) overall conversion (3) ${ }^{0} \mathrm{Be}^{`} \quad \mathbf{0 3}$
(b) Explain: Fundamental quantities and Derived quantities?

04
(c) The heat of combustion of methane, carbon and hydrogen are -890.4 07 $\mathrm{kJ} / \mathrm{mol}, 393.51 \mathrm{~kJ} / \mathrm{mol}$ and $-285.84 \mathrm{~kJ} / \mathrm{mol}$ respectively. Calculate the heat of formation of methane.

OR

Q. 4 (a) Explain sensible heat and latent heat. 03
(b) What is an adiabatic flame temperature? State its significance and explain the procedure for its calculation.
(c) Define the following terms with respect to humidification operation:
(1) Absolute humidity (2) Relative humidity (3) Percent humidity (4) Dry bulb temperature (5) Wet bulb temperature (6) Dew point temperature (7) Humid Heat
Q. 5 (a) Explain standard heat of formation and standard heat of combustion 03
(b) 150 L oxygen cylinder contains gas at $300 \mathrm{~K} \& 10$ bar. Calculate the mass of oxygen in the cylinder?
(c) Convert 1 atm into equivalent $\mathrm{N} / \mathrm{m}^{2}, \mathrm{~m} \mathrm{H}_{2} \mathrm{O}, \mathrm{ft}_{2} \mathrm{O}$, psi , in Hg , mm Hg , and $\mathrm{kgf} / \mathrm{cm}^{2}$.

OR

$\begin{array}{llll}\text { Q. } 5 & \text { (a) } & \text { Explain Dalton's law. } & \mathbf{0 3} \\ & \text { (b) } & \text { Write about methods of solving material balance problems without } & \mathbf{0 4} \\ & \text { chemical reaction. } & \\ & \text { (c) } & \text { A soap plant produced raw soap containing } 50 \% \text { moisture. This is to } & \mathbf{0 7} \\ & \begin{array}{l}\text { be dried } 20 \% \text { moisture before it is pressed into cakes for sale. How } \\ \\ \\ \\ \\ \\ \\ \\ \text { sany } 100 \mathrm{~g} \text { soap piece can be obtained from } 1000 \mathrm{~kg} \text { of original raw }\end{array} \\ \end{array}$

