

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

Subject Code: 2143507 Date: 16/12/2019

Subject Name: Fundamentals of Stoichiometry

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	5. Figures to the right indicate run marks.		MARKS
Q.1	(a) (b)	Explain Raoult's law. The gaseous reaction $A = 2B + C$ takes place isothermally in a constant- pressure reactor. Starting with a mixture of 75 % A and 25 % inerts (by volume), in a specified time the volume double.	03 04
	(c)	Calculate the heat of reaction for the esterification of ethyl alcohol with acetic acid if the standard heats of combustion are: ethyl alcohol: -1366.91 kJ/mol, acetic acid: -871.69 kJ/mol, ethyl acetate: -2274 kJ/mol	07
Q.2	(a)	Differentiate between: Endothermic and exothermic reactions.	03
	(b)	Prove that, mole fraction = Volume fraction = Pressure fraction.	04
	(c)	A solution of sodium chloride in water contains 25% NaCl (by mass) at 333 K. The density of the solution is 1.129 kg/L. Find the molarity, normality and molality of the solution. Atomic mass: Na: 23, Cl:35.5	07
		OR	
	(c)	Calculated the enthalpy of zinc vapour at 1200 0 C and atmosphere pressure, relative to solid at 10 0 C.	07
		Data: Melting point of $Zn = 419$ $^{\circ}C$ (at 1 atm)	
		Boiling point of $Zn = 907$ °C (at 1 atm)	
		Mean Cp of solid Zn = 0.105 kcal/kg 0 C Mean Cp of liquid Zn = 0.109 kcal/kg 0 C	
		Heat of fusion of Zn = 1660 kcal/kgmole	
		Heat of vaporization of Zn = 26900 kcal/kgmole	
		Mean Cp of Zinc vapour = 4.97 kcal/kgmole ⁰ C	
		Atomic weight of $Zn = 65.4 \text{ kg/kgmole}$	
Q.3	(a)	Explain Recycle, Purge, bypass with suitable diagram	03
	(b)	A single effect evaporator is fed with 10000 kg/hr of weak liquor containing 15% caustic by weight and is concentrated to get thick	04
		liquor containing 40% by weight caustic (NaOH). Calculate (a).	
	(c)	Kg/hr of water evaporated (b) kg/hr of thick liquor obtained Iron pyrite is burned in 50 % excess air. The following reaction	07
	(C)	occurs: $4FeS_2 + 11O_2 - 2Fe_2O_3 + 8SO_2$ For 100 kg of iron pyrite	07
		charged, calculate following: a) The amount of air supplied in kg. b)	
		The composition of exit gases if the percent conversion of iron pyrite is 70 %	
OR			
Q.3	(a)	Explain: Limiting Reactant, Excess reactant and percent conversion.	03
	(b)	Explain: (1) Wet bulb temperature (2) Absolute humidity	04
	(c)	1 kg nitrogen is mixed with 3.5 m3 of hydrogen at 300 K and 101.3 kPa and sent to the ammonia converter. The product leaving the	07
		converter analyzed 13.7 % ammonia, 70.32 % hydrogen and 15.98	
		% nitrogen. i. Identity the limiting reactant. ii. What is the present	

stranker's cheese of excess www.prirstRankerschenpresent conversionsefranker.com limiting reactant? 0.4 Define: (1) single pass conversion (2) overall conversion (3) ⁰Be` (a) 03 Explain: Fundamental quantities and Derived quantities? 04 **(b)** The heat of combustion of methane, carbon and hydrogen are -890.4 07 (c) kJ/mol, 393.51kJ/mol and -285.84 kJ/mol respectively. Calculate the heat of formation of methane. **Q.4** (a) Explain sensible heat and latent heat. 03 What is an adiabatic flame temperature? State its significance and 04 **(b)** explain the procedure for its calculation. Define the following terms with respect to humidification operation: **07** (c) (1) Absolute humidity (2) Relative humidity (3) Percent humidity (4) Dry bulb temperature (5) Wet bulb temperature (6) Dew point temperature (7) Humid Heat **Q.5** Explain standard heat of formation and standard heat of combustion (a) 03 150 L oxygen cylinder contains gas at 300 K & 10 bar. Calculate the 04 mass of oxygen in the cylinder? Convert 1 atm into equivalent N/m², m H₂O, ft H₂O, psi ,in Hg ,mm (c) **07** Hg, and kgf/cm². OR **Q.5** Explain Dalton's law. 03 (a) Write about methods of solving material balance problems without 04 **(b)** chemical reaction. (c) A soap plant produced raw soap containing 50 % moisture. This is to 07 pressonance of the state of the be dried 20 % moisture before it is pressed into cakes for sale. How many 100 g soap piece can be obtained from 1000 kg of original raw soap?