

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-IV (New) EXAMINATION - W	INTER 2019										
	Subje	ect Code: 2144003	Date: 14/12/2019										
	Subje	ect Name: Basics of Transportation Engineering											
I	Time	: 10:30 AM TO 01:00 PM	Total Marks: 70										
	Instru	ctions:											
		1. Attempt all questions.											
		 What is suffable assumptions wherever necessary. Figures to the right indicate full marks. 											
		4. Support your answers with necessary sketches.											
				MARKS									
Q.1	(a)	Explain camber. What are the objectives of camber? Discus	s the factors on which	03									
		amount of camber depends.											
	(b)	Briefly explain: Tyre pressure, contact pressure, rigidity factor, ESWL											
	(c)	Discuss the MORTH requirements of WMM, DBM, BC, SDBC mixes for											
		pavement.											
~ •													
Q.2	(a) (b)) What is road safety audit? Show its process with flow chart.											
	(U)	its necessary expression	e of highway? Derive	04									
	(c)	Design following geometric elements on horizontal curve for the ruling design											
		speed of 80 kmph.											
		Ruling minimum radius, Super elevation, Extra widening,	, Length of transition										
		curve, SSD, ISD, and set-back distance. OR											
	(\mathbf{a})	An ascending gradient of 1:50 meets a descending gradient of	of 1.80 Determine the	07									
	(0)	length of summit curve to provide ISD and OSD for a desi	gn speed of 90 kmph.	07									
		Assume all other data.	Si speca or ye milpin										
Q.3	(a)	Explain special points to be considered while road constru	ction in black cotton	03									
		soil.											
	(b)	The speed-density relationship of traffic on a section of	a freeway lane was	04									
		estimated to be $vx = 1/.5$ in (225/K) as per Greenberg's mode and density at Maximum flow (b) Find jam density	a. (a) Find flow, speed										
	(c)	The loaded wt, on the rear dual wheels of a truck is 5500 ks	. The c/c spacing and	07									
	(0)	clear space in the dual wheels are 30 cm and 10 cm respe	ctively. Calculate the	01									
		ESWL for pavement thickness of											
		(i) 20 cm (ii) 35 cm (iii) 50 cm											
0.2	(-)	OR What are the converters required as the input for converter		02									
Q.3	(a) (b)	what are the parameters required as the input for pavements Explain with sketches Speed Flow Density relationships	analysis? Derive Greenshield's	03 04									
	(0)	equations for maximum flow condition.	Derive Oreensmend s	U4									
	(c)	Calculate the stresses at interior, edge and corner region	of cement concrete	07									
		pavement using Westergaard's stress equations.											
		Take wheel load = 4100 kg , Ec = $3 \times 105 \text{ kg/cm}^2$, Paveme	nt thickness $= 20$ cm,										
		$\mu = 0.15$, Modulus of subgrade reaction k = 5 kg/cm3, Radiu	is of contact area $= 15$										
<u> </u>		cm.	1	03									
Q.4	(a)	Describe with sketches failures in rigid pavements. Write t	ne remedial measures	03									
	(b)	Give detailed comparison between Highway and Runway no	avements	04									
	(c)	A subgrade soil sample has following properties:		07									

FirstRanker.com = 35 %. Design the pavement section by G.I. method for heavy traffic and compare the value of G.I. using the standard curves.

OR

- Describe with sketches failures in flexible pavements. Write the remedial measures 03 **Q.4** (a) for them. 04
 - Give detailed comparison between Flexible and Rigid pavements **(b)**
 - Design a suitable bituminous pavement section for a two-lane road with a Single 07 (c) carriageway. The traffic expected is 600 commercial vehicles per day in both directions with average vehicle damage factor of 1.8. Design subgrade CBR is 7 % and the assumed design life of the pavement is 12 years. Use Guidelines of IRC 37-2001.
- **O.5** How the speed and delay studies are carried out? What are its applications? **(a)**
 - (b) Define: Spot speed, Running speed, SMS, TMS.
 - From the following data of spot-speed study, draw graphs for frequency (%) -vs-(c) Speed range and Cumulative frequency (%) - vs- Speed. Also, calculate: Modal speed, Median speed, TMS, SMS, speed to be used in geometric design, speed for traffic regulation, standard deviation, coefficient of variation.

Speed	0-10	11-	21-	31-	41-	51-	61-	71-	81-
range		20	30	40	50	60	70	80	90
(kmph)									
No. of	5	9	15	22	28	21	14	6	3
vehicles									

OR

- Describe with sketches special considerations for Hill Roads construction. **Q.5** (a)
 - Explain Origin and Destination study. What are the uses of it? **(b)**
 - On the right angled crossing of four arm signalized intersection, design 4 phase (c) signal cycle for the given data using Webster's method and IRC recommendations. Assume, amber = 3 sec/phase, lost time = 2 sec/phase, saturation flow rate=600W [W= Width of approach (m)], pcu value for the left and right turning vehicles are 25% and 75% more respectively. All left (L), straight (S) and right (R) turning vehicles on an approach are allowed to depart simultaneously during a green interval. Road AB crosses road CD at right angle.

Approach		Α	21	В			С			D		
Width(m)		10		10		9			9			
Turning	L	S	R	L	S	R	L	S	R	L	S	R
Volume	400	900	300	300	800	150	100	480	60	120	450	60
(pcu/hr)												

03

04

07

03

04

07

-4 :

www.FirstRanker.com

THE REAL PROPERTY.

(a)

- Combined thickness of surface, base and sub-base
- --- Thickness of surface and base.

Design Chart by Group Index value