Date: 21/11/2019

04

Subject Code: 2150104

(b)

(c)

Explain PISO algorithm.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- V (New) EXAMINATION - WINTER 2019

Subje	ect Na	ame: Computational Fluid Dynamics II		
Time: 10:30 AM TO 01:00 PM			Total Marks: 70	
Instruc	ctions:			
	1. A	ttempt all questions.		
		lake suitable assumptions wherever necessary.		
	3. F	igures to the right indicate full marks.		
Q.1	(a)	Describe about constant pressure boundary condition.	03	
	(b)	Why periodic or cyclic boundary condition is needed?	04	
	(c)	Distinguish between axisymmetric and symmetry boundary condition.	07	
Q.2	(a)	Describe about wall boundary condition.	03	

Write down the steps involved in SIMPLE-R method. **07** (c) OR

(c) Write the steps to be followed for SIMPLE-C method. 07 **Q.3** (a) Compare the pros and cons of SIMPLE, SIMPLE-R and SIMPLE-C. 03 (b) Why Pressure velocity coupling is required to solve incompressible fluid 04 flow problems?

(c) Explain first order upwind scheme in detail. State its disadvantages. **07**

OR What is TDMA? Why it is used? 0.3 03 (a) **(b)** Explain Flux Vector Splitting. 04

(c) Explain second order Upwind scheme 07

(a) Differentiate Collocated grid and Staggered grid. 03 **Q.4** Write a short note on High Resolution Schemes. 04 **(b)**

(c) Explain Godunov approach with the help of shock tube problem. **07**

OR **Q.4** Differentiate FDM, FVM and FEM. 03 (a) How Finite Volume Method works? Explain in brief. 04 Write a note on FVM for two dimensional diffusion problems. **07**

Q.5 (a) Write advantages of Finite Volume Method. 03

(b) Explain Crank Nicolson Scheme for unsteady heat conduction problem. 04

Explain the concept of Supersonic flow over a sharp edged flat plate. **07** (c)

(a) How step size is calculated for the flow over a flat plate? **Q.5** 03

(b) Discuss the initial and boundary conditions for two dimensional 04 unsteady, supersonic and viscous flows over the flat plate.

(c) Draw the flow chart of Main program for Navier-Stokes equation.

07