

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- V (New) EXAMINATION - WINTER 2019

		Code: 2150107 Date: 29	/11/2019	
Subject Name: Aerodynamics I Time: 10:30 AM TO 01:00 PM Instructions: Total M				
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary.	MARKS	
Q.1	(a)	Define Wash in and Wash Out.	03	
Ų.I	(b)		04	
	(c)	Define drag and explain - form drag, skin friction drag, induced drag.	07	
Q.2	(a)	Define Lift and draw $C_L \ v/s \ \alpha$ plot symmetrical and unsymmetrical airfoil	03	
	(b)	Derive the expression for speed of sound in term of temperature	04	
	(c)		07	
	()	OR	0=	
	(c)	What are the Aerodynamic forces and moments? Derive equations for Lift and drag with a suitable diagram.	07	
Q.3	(a)	it	03	
	(b)		04	
	(c)	Explain doublet flow and derive expression of potential and stream function for doublet flow. OR	07	
Q.3	(a)		03	
Q.O	(b)		04	
	(c)		07	
Q.4	(a)	What is critical Mach number and define critical pressure coefficient	03	
	(b)	What is Airfoil Stalling? Explain it with a suitable diagram.	04	
	(c)	Consider an oblique shock wave with a wave angle of 30°. The upstream flow Mach number is 2.4. Calculate the deflection angle of the flow, the pressure and temperature ratios across the shock wave and the Mach number behind the wave.	07	
		OR		
Q.4	(a)	Write a note on Lifting Flow over a Circular Cylinder.	03	
	(b)	- · · · · · · · · · · · · · · · · · · ·	04	
	(c)	Derive Θ - β -M relation.	07	
Q.5	(a)	Define Incompressible flow and Compressible flow.	03	

04

Derive Rankine Hugoniot.

(b)

FirstRanker.com

Firstranker Derive relation for mach purpler unstream (M1) and downstree in stranker.com

of oblique shock wave.

OR

Q.5	(a) (b)	Write the applications of airfoil in three different fields Consider a normal shock wave in air where the upstream flow properties are $u_1 = 680 \text{ m/s}$, $T_1 = 288 \text{ K}$ and $P_1 = 1 \text{ atm}$. Calculate the velocity, temperature and pressure downstream of the shock.	03 04
	(c)	Explain expansion and compression wave and derive Prandtl-Meyer relation.	07

www.kirstRanker.com