FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

00

		GUJARAT T be - semester-	ECHNOI V (New) EX	LOGICAI Aminatioi	L UNIVE	RSITY R 2019		
Subject Code: 2150403Date: 04/1Subject Name: Basics of Reaction EngineeringTotal MarTime: 10:30 AM TO 01:00 PMTotal MarInstructions:Total Mar						Date: 04/12/2	2019	
						Total Marks	s: 70	
	1. A 2. N 3. H 4. N	Attempt all questions. Make suitable assump Figures to the right in Notations and symbols	tions whereve dicate full ma s have their co	er necessary. rks. onventional m	eanings.			
Q.1	(a)	Explain different ty	pes of ideal r	eactors.			03	
	(b)	What do you unde	erstand by in	stantaneous f	ractional yiel	d and overall	04	
		fraction yield of a p	product?				07	
	(c)	help of a graph that of reaction.	theory of t how activati	on energy aff	ependency. Ex ects temperat	ure sensitivity	07	
0.2	(a)	Define the followin	g terms:				03	
C		i) Rate constant	ii) Mole	cularity	iii) Order o	of reaction		
	(b)	Show that for a second order irreversible reaction $2A \rightarrow$ products, 0						
		$\frac{1}{C_{Ao}}\frac{X_A}{1-X_A} = kt.$						
	(c)	Define autocatalytic reactions. Derive an expression to find its kinetics. 07 Explain plots of rate of reaction Vs. time and concentration Vs. time						
	(c)	The rate constant of	f a reaction is	measured at	different tem	peratures is	07	
		reported below. Ca	culate the ac	tivation energ	y for this read	ction.		
		Temperature, K	278	298	308	318		
		Rate constant, k,	2.16×10^5	42.2×10^5	516 x 10 ⁵	$4520 \ge 10^5$		
		sec ⁻¹						
03	(\mathbf{a})	Eurlain the closeff	action of man	tion in details	with around	22	02	
Q.3	(a) (b)	Explain the classification of reaction in details with examples. 03						
	(0)	(b) Find the first order rate constant for the disappearance of A in the gas phase reaction $2A \rightarrow R$ if on holding the pressure constant, the volume of						
	the reaction mixture starting with 80 % of A decreases by 20% in 3							
		minutes.	U					
	(c)	Explain the kinetic	models for n	on-elementary	reactions wi	th examples.	07	
				OR				
Q.3	(a)	Explain the signific	ance of space	e time and spa	ce velocity.		03	
	(b)	Consider a feed $C_{Ao} = 200$, $C_{Bo} = 200$, $C_{io} = 100$ (inert) to a steady flow						
		the reactor evit wh	mai gas phas	e reaction is A and X ₂ there?	$4 + 2R \rightarrow 0K$	$. II C_A = 40 at$		
		the reactor exit, wh	at is C _B , X _A a	and X_B there?				

- (c) Explain the kinetics of reactions of shifting order. 07
- (a) How mixing of different composition of fluid is the key to the formation 03 Q.4 of intermediate for irreversible reactions in series?

 $A \rightarrow R \rightarrow S$

irstranker	Find the conversion with ist Rankier. contch reactor www.firstRank	ker.c8fm
	$-r_A = 3C_A^{0.5} \text{ mol}^{0.5}/\text{lit}^{0.5}$.hr, $C_{Ao} = 1 \text{ mol}/\text{lit}$.	
(c)	Derive the C_{Rmax} and t_{Rmax} for the first order reactions given below:	07

OR

Q.4	(a)	Explain the size comparison of single ideal CSTR with PFR.	
	(b)	Derive the design equation of recycle reactor.	04
	(c)	Write a short note on differential method and integral method of analysis	
		of data.	

- Q.5 (a) Derive the performance equation of ideal batch reactor. 03
 - (b) Write a short note on optimum temperature progression. 04
 - (c) A first order irreversible reaction A → B is carried out in a plug flow 07 reactor followed by an equal size CSTR in series. The concentration of A in the feed is 1 kmol/m³ and the residence time in each reactor is 3600 sec. The specific reaction rate constant for the reaction is 1/3600 sec⁻¹. Find the conversion of A at the exit of the system.

OR

- Q.5 (a) Derive the performance equation of ideal plug flow reactor (PFR). 03
 - (b) Discuss the different ways in which rate of reaction can be defined. 04
 - (c) Discuss in detail the qualitative product distribution for series reactions. 07

www.FirstRanker.com