GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V (New) EXAMINATION - WINTER 2019

Subject Code: 2150503
Date: 04/12/2019
Subject Name: Chemical Engineering Thermodynamics - II
Time: 10:30 AM TO 01:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define: (1) Partial molar property (2) Activity coefficient (3) Fugacity. 03
(b) Discuss the excess Gibbs free energy relation with activity coefficient and chemical potential.
(c) Determine P-x-y data for chloroform (1) methanol (2) system at $35^{\circ} \mathrm{C}$, vapor pressure of chloroform and methanol is 39.54 KPa and 27.95 KPa respectively. Margules parameters are: $A_{12}=0.738$ and $A_{21}=1.868$.
Q. 2 (a) Define chemical potential and state its significance. 03
(b) Derive the expression to estimate fraction of initial mixture that is $\mathbf{0 4}$ vaporized at equilibrium using flash vaporization calculation.
(c) Derive Margules equations for determination of activity coefficients of a $\quad \mathbf{0 7}$
binary system from the expression:

$$
\frac{G^{E}}{R T}=\left(A_{21} x_{1}+A_{12} x_{2}\right) x_{1} x_{2}
$$

OR
(c) Show that for a binary system, Henry's law is valid for component ' 1 ' then Lewis Randall rule is valid for component ' 2 '.
Q. 3 (a) Write a short note on Bubble point equilibria. 03
(b) Write a short note on 'fugacity of a pure liquid'. 04
(c) A gas mixture of $\mathrm{SO}_{2(\mathrm{~g})} \mathrm{O}_{2(\mathrm{~g})}$ and inert $\mathrm{A}_{(\mathrm{g})}$ in mole ratio 1: 0.5: 2 enters 07
in a reactor at 30 bar and 900 K to produce $\mathrm{SO}_{3(\mathrm{~g})}$ as:$\mathrm{SO}_{2(\mathrm{~g})}+0.5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{3(\mathrm{~g})}$. Determine the degree of conversion atequilibrium and composition of mixture leaving the reactor. Assume thereaction mixture behaves like an ideal gas. $\mathrm{K}=5.973$ and $\mathrm{K}_{\phi}=1$.
OR
Q. 3 (a) Derive summability relation for partial molar properties. 03
(b) Methanol (1)-acetone (2) system is described by the Van Laar activity 04 coefficient model. At $60^{\circ} \mathrm{C}$ the model parameters are $A_{12}=0.47$ and $A_{21}=0.78$. Estimate the activity coefficients for a solution containing $15 \mathrm{~mole} \%$ of methanol.
(c) Derive equation for establish expression of standard Gibbs free energy 07 change of chemical reaction as a function of thermodynamic equilibrium constant.
Q. 4 (a) With neat diagram explain tangent-intercept method to estimate partial 03
molar volume of a binary solution.
(b) Discuss van Laar equations applicable in determination of activity co- 04 efficient for VLE at low pressure with suitable examples.
 by $\ln \gamma_{1}=0.6 x_{2}^{2}$ and $\ln \gamma_{2}=0.6 \mathrm{x}_{1}{ }^{2}$. At $T=353 \mathrm{~K}$, vapor pressure of $\mathrm{A}, \mathrm{P}_{\mathrm{A}}^{\text {sat }}$ $=119.96 \mathrm{KPa}$ and that of B is $\mathrm{P}_{\mathrm{B}}{ }^{\text {sat }}=79.97 \mathrm{KPa}$.Does an azeotrope exist at 353 K ? If so, determine the azeotropic pressure and composition.

OR

Q. 4 (a) Derive an expression for partial molar volumes \bar{V}_{1} and \bar{V}_{2} using following relationship for the molar volume of the binary liquid mixture of components 1 and 2.
$V=x_{1} V_{1}+x_{2} V_{2}+x_{1} x_{2}\left[\mathrm{~B}+\mathrm{C}\left(x_{1}-x_{2}\right)\right]$
(b) Explain any two methods for estimation of fugacity of pure gas.
(c) A gas mixture containing $30 \mathrm{~mol} \%$ of $\mathrm{CO}, 50 \mathrm{~mol} \%$ of H_{2} and $20 \mathrm{~mol} \%$ of inert gas is to be used for synthesis of methanol as:
$\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$
Gases issued from the catalytic chambers are in chemical equilibrium with respect to the reaction at 30 bar and 625 K . Assume that the equilibrium mixture forms an ideal solution, $\mathrm{K}=5 \times 10^{-5}$ and $\mathrm{K}_{\phi}=1$. What is the percentage conversion of CO ?
Q. 5 (a) Explain criteria of stability for a single phase binary system.

03
(b) Draw neat diagram of idealized osmotic system and derive an equation for osmotic pressure difference.
(c) Mixtures of n-Heptane (A) and n-Octane (B) are expected to behave as an ideal solution .The total pressure over the system is 101.3 KPa . Use vapour pressure data given below and construct
a) T- x_{A}, y_{A} diagram b) Equilibrium diagram for A.

T, K	371.4	378	383	388	393	398.6
$\mathrm{P}_{\mathrm{A}}{ }^{\text {sat }}, \mathrm{KPa}$	101.3	125.3	140	160	180	205.3
$\mathrm{P}_{\mathrm{B}}{ }^{\text {sat }} \mathrm{KPa}$	44.4	55.6	64.5	74.8	86.6	101.3
OR						

Q. 5 (a) For VLE with suitable example, draw diagram for minimum azeotrope.
(b) Determine the number of degree of freedom F for each of following:
(1) A system prepared by pattial decomposition of CaCO_{3} into evacuated space.
(2) A system of two miscible non reacting species which exists as an azeotrope in VLE.
(c) With proper nomenclature draw three types of constant- pressure liquidliquid solubility diagram.

