3

3

Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (OLD) EXAMINATION - WINTER 2019

Subject Code: 110008 Date: 17/01/2020

Subject Name: Maths - I

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q-1 (a) (i) State Sandwich theorem, using it find
$$\lim_{x\to 0} g(x)$$
 if $3-x^2 \le g(x) \le 3\sec x$ for all x.

(ii) Can Rolle's theorem for
$$f(x) = |x|, x \in [-1,1]$$
 applied?

(b) If
$$u = f(x - y, y - z, z - x)$$
, Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

Q-2 (a) (i) Use Taylor's series to find the expansion of
$$\log_e x$$
 in powers of $(x-1)$.

(ii) Use L'Hospital rule, Evaluate
$$\lim_{x\to 0} \frac{\log x}{\cot x}$$
 3

(b) Trace the curve
$$r^2 = a^2 \cos 2\theta$$
.

Q-3 (a) (i) Test the convergence of
$$\sum_{n=0}^{\infty} \frac{2^n - 1}{3^n}$$
.

(ii) Does the sequence
$$\left\{\frac{3}{n+3}\right\}$$
 monotone?

(b) If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 Prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\cos 3u \sin u$.

Q-4 (a) (i) Test the convergence of
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$
, by Ratio Test.

(b) Find the extremum values for
$$f(x, y) = x^3 + y^3 - 3xy$$
.

Q-5 (a) (i) Expand
$$x^2y+3y-2$$
 in the neighbourhood of the point $(1,-2)$.

(ii) Find the equation for tangent plane and normal line at the point (1,1,1) on the surface
$$x^2 + y^2 + z^2 = 3$$
.

(b) Find the Volume of sphere
$$x^2 + y^2 + z^2 = a^2$$
.

Q-6 (a) (i) Evaluate
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dA$$
, by changing the order of integration.

(ii) Find the value of
$$m$$
 if $\overline{F} = (x+2y)i + (my+4z)j + (5z+6x)k$ is solenoidal.

(b) Evaluate
$$\iint_R (x+y)dydx$$
, where R is the region bounded by $x=0, x=2, y=x, y=x+2$.

Q-7 (a) (i) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{2\pi} (r^2 \cos^2 \theta + z^2) r d\theta dr dz$$
 4

www.FirstRanker.com

www.FirstRanker.com

- (ii) Using Green's theorem to evaluate the integral $\oint_C (y^2 dx + x^2 dy)$, where C: The triangle bounded by x = 0, x + y = 1, y = 0.
- (b) Use divergence theorem to evaluate $\iint_S (x^3 dy dz + x^2 y dz dx + x^2 z dx dz)$ where *S* is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the circular discs z = 0 and z = b.

MWW.FirstPanker.com