www.FirstRanker.com

Enrolwww.PirstRanker.com

Total Marks: 70

03

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- V (New) EXAMINATION - WINTER 2019 Date: 21/11/2019

Subject Code: 2150608

Subject Name: Structural Analysis-II

Time: 10:30 AM TO 01:00 PM

FirstRanker.com

Firstranker's choice

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Define: (i) Influence line diagrams (ii) Absolute maximum bending moment 03 0.1 (iii) Distribution factor 04
 - (b) Find stiffness matrix for beam shown in fig.1.
 - (c) Calculate the vertical displacement at free end using unit load method for the 07 cantilever bent as shown in the fig.2.
- 0.2 (a) Give characteristics of stiffness and flexibility Matrix.
 - (b) A cantilever beam of 5m has fixed support at A and B is free end. Draw ILD 04 for support reactions, shear force and bending moment at 2 m from support A.
 - (c) Find the matrices: [A_D], [A_{DL}], [S] and [D] with usual notations for the beam 07 shown in fig.3, using Stiffness method.

OR

- (c) Find the matrices: $[D_Q]$, $[D_{QL}]$, [F] and [Q] with usual notations for the beam 07 shown in fig.3. Use Flexibility method assuming reactive moment at A (M_A) and bending moment at $B(M_B)$ as redundant.
- (a) Define: Sway. What are the causes for Sway in portal frames? 03 **Q.3**
 - (b) Using Castigliano's first theorem find slope at free end of cantilever beam of 04 span 5 m subjected to UDL of 30 kN/m throughout the span.
 - Draw bending moment diagram for the frame shown in fig. 4 using Moment 07 (c) Distribution Method.

OR

Q.3	(a)	Find flexibility matrix for the beam shown in fig. 1	03
	(b)	State and explain the Muller-Breslau's Principle with suitable example.	04
	(c)	Draw bending moment diagrams for the frame shown in fig. 4 using Slope	07
		Deflection Method.	
Q.4	(a)	State Castiglione's first and second theorem with its usefulness.	03
•	(b)	Derive slope-deflection equations from first principles.	04
	(c)	Three point loads 70 kN, 60 kN and 50 kN equally spaced 3m respectively,	07
		cross a girder of 12 m span from left to right, with the 50 kN load as	
		leading load. Calculate maximum shear force (positive and negative), and	
		bending moment at a section 5m from left end.	
		OR	
O.4	(a)	Find distribution factors for frame shown in fig.6.	03
C	(b)	A UDL of 12 kN/m and 5m length crosses a simply supported beam of 10 m	04
		span from left to right. Find maximum B.M at section 4 m from left support.	
	(c)	Draw influence line diagram for propped cantilever beam AB of span 6 m for	07
		support reactions (R_A , R_B , M_A). Calculate ordinate at 2 m interval.	
0.5	(a)	Write slope deflection equations for the beam shown in fig. 5, if middle	03
C		support sink by 3 mm.	
	(b)	Using flexibility method find M_A for propped cantilever beam subjected to	04
		UDL 30 kN/m for the whole span. Consider M_A as redundant. EI is constant.	
		L	

trance Find Support reactions w. First Ranker com in fig. www.First Ranker com theorem.

OR

- Q.5 (a) Draw possible released beam for statically indeterminate beam shown in fig.3 03
 - (b) A propped cantilever beam of span 6 m is subjected to UDL of 50 kN/m 04 throughout the span. Using Castilgliano's theorem find support reactions.
 - (c) Analyse truss shown in fig. 7 by stiffness Method. AE is constant for all **07** members

2 m

10 kN/m

10 kN

2 m

