FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Seat N	0.:	Enrolment No.		
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V (New) EXAMINATION - WINTER 2019		
Subje	ect C	Code: 2150610 Date: 25/11	/2019	
Subje	ect N	ame: Advanced Structural Analysis		
Time	: 10::	30 AM TO 01:00 PM Total Mark	Total Marks: 70	
Instruc	tions			
	1. A 2. I	Attempt an questions. Make suitable assumptions wherever necessary.		
	3. 1	Figures to the right indicate full marks.		
			MARKS	
Q.1	(a)	Define: 1. Flexibility 2. Stiffness 3. Shape Factor.	03	
	(b)	Enlist advantages and disadvantages of plastic design.	04	
	(c)	Differentiate between stiffness method and flexibility method.	07	
0.2	(a)	Explain in brief the methods of Plastic analysis.	03	
X	(b)	Calculate the shape factor for the section shown inFigure no.1.	04	
	(c)	A spherical dome with a span of 10 m and central rise of 2 m has a shell		
		which is 120mm thick. The wind load on the dome is estimated to the	07	
		equivalent to 1.2 kN/m^2 . Estimate stresses in the dome.	07	
	(c)	Derive the formula for Mp required for the propped cantilever beam loaded	07	
		by a collapse uniformly distributed load of Wc kN/m.		
Q.3	(a)	Explain any two types of skeleton structures with their internal forces and	03	
	(b)	Gerormations.	04	
	(c)	Analyze the frame shown in figure no.2 and draw B.M. diagram. EI=	07	
		constant.		
		OR OR		
Q.3	(a) (b)	Explain Domes and write application of it.	03	
	(U)	rigidity EI What is the stiffness coefficient corresponding to rotation of	04	
		the propped end?		
	(c)	Analyse the typical spherical dome subjected to point load at crown.	07	
Q.4	(a)	Derive equation of collapse load for the propped cantilever beam subjected	03	
	(h)	A roof of a hall having diameter 20 m is to be covered by a conical dome.	04	
	(0)	of 100 mm thickness and 4 m rise. Assuming live load and other loads as	04	
		1.5 kN/m^2 , calculate stresses in the dome.		
	(c)	Derive equations of shape factor of (i) Circular section (ii) Square section.	07	
~ (OR		
Q.4	(a)	Derive the equation of collapse load for the propped cantilever beam subjected to central point load	03	
	(b)	State and explain in brief various collapse mechanism of a frames in plastic	04	
		theory with neat diagrams.		
	(c)	Find the collapse load for a fixed beam of span L and subjected to an UDL	07	
05	(ച	of w/unit length using static method and kinematics method. Differentiate between Force Method and Displacement Method of Analysis	03	
2.5	(a)	Differentiate between 1 orde method and Displacement method of Allarysis.	05	

www.FirstRanker.com

	(b)	Explain Equations of static Equilibrium.	04
	(c)	Find the shape factor and plastic moment capacity of a Tee section with a	07
		Flange 100X12 m and web 180X10 mm, Assume fy=250 MPa. Also find	
		collapse load if it is used for a simply supported span 3m.	
		OR	
Q.5	(a)	Explain term load factor.	03
	(b)	A continuous steel beam consists of three equal spans 10m each carrying an	04
		u.d.l. of 50 kN/m under working conditions. Determine fully plastic moment	
		required for the beam. Take load factor =1.7 assume uniform beam section.	
	(c)	An ISLB 300 section is used as a simply supported beam of span 5m. find	07
		the shape factor of the beam section. If the beam carries a point load of 80kN	

at mid span, find the load factor. Take fy=250 N/mm2.

www.FirstRanker.com