FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

	F	SE - SEMESTER- V (New) EXAMINATION - WINTER 2019	
Subject Code: 2150703 Date: 25			1/2019
Subi	ect Na	ame. Analysis and Design of Algorithms	
Time: 10:30 AM TO 01:00 PM Total Mark			ks• 70
Instructions:			
insti u	1. A	ttempt all questions.	
	2. M	lake suitable assumptions wherever necessary.	
	3. F i	igures to the right indicate full marks.	
			MARKS
01	(a)	Find Omega (O) notation of function $f(n) - 2n^2 + 6n + 4n + 6n$	03
Q.1	(a) (b)	Define Big_{-} oh and Theta notations with graph	03
	(U)	White a second and theta holations with graph.	07
	(c)	Write sequential search algorithm and analyze it for worst case time	07
		complexity. Represent its time complexity using Big-oh (O) notation.	
Q.2	(8)	Find upper bound of function $f(n) = lg(n^2) + n^2 lg n$	03
	(u) (h)	If $P(n) = a_0 + a_1 n + a_2 n^2 + a_m n^m$ then prove that $P(n) =$	02
	(0)	$O(n^m)$ Here $a_0 a_1 a_2 \dots a_m$ are constants and $a_m > 0$	04
	(c)	Solve following recurrence relation using suitable method and express	07
	(0)	your answer using Big-oh (O) notation	07
		$T(n) = T(n/3) + T(2n/3) + \Theta(n)$	
		(n) = 1(n/3) + 1(2n/3) + 0(n)	
	(c)	Solve following recurrence relation using suitable method and express	07
	(0)	your answer using Big-oh (Ω) notation	07
		$T(n) = 2 T(n/2) + n^2$	
Q.3	(9)	If $T_1(n) = O(f(n)) \& T_2(n) = O(g(n))$ then prove that $T_1(n) + T_2(n) =$	03
	(a)	$m_{1}(n) = O((n)) \otimes 1_{2}(n) = O(g(n))$ then prove that $1_{1}(n) + 1_{2}(n) = max(O(g(n)), O(f(n)))$	05
	(h)	Illustrate the working of the quick sort on input instance: 25, 29, 30	04
	(0)	35 42 47 50 52 60 Comment on the nature of input i e best case	04
		average case or worst case	
	(c)	Write greedy algorithm for activity selection problem. Give its time	07
	(C)	complexity For following intervals, select the activities according to	07
		vour algorithm I_1 (1-3) I_2 (0-2) I_2 (3-6) I_4 (2-5) I_5 (5-8) I_6 (3-10) I_7	
		your algorithm. $I_1(1-3), I_2(0-2), I_3(3-0), I_4(2-3), I_5(3-0), I_6(3-10), I_7(7-0)$	
		(<i>1-5</i>).	
03	(a)	Arrange following growth rates in increasing order	03
Q.3	(a)	Arrange following growth rates in increasing order. $O(n^{1/4}) O(n^{1.5}) O(n^3 \lg n) O(n^{1.02}) O(n^6) O(n!) O(n^{1/2}) O(n^{6/2}) O(2^n)$	03
	(b)	Ullustrate the working of the marge sort elevithm on input instance:	04
	(U)	10 27 30 88 17 08 42 54 72 05 Also write best case time	04
		10, 27, 30, 00, 17, 70, 42, 34, 72, 93. Also write best case time	
		complexity of merge soft argonum.	

strank(c)'s what is a minimum sparning tranker.com correspond to following graph using Prim's algorithm.

- Q.4 (a) What is Principle of Optimality? Explain it with example.
 - (b) Consider the instance of the 0/1 (binary) knapsack problem as below 04 with P depicting the value and W depicting the weight of each item whereas M denotes the total weight carrying capacity of the knapsack. Find optimal answer using greedy design technique. Also write the time complexity of greedy approach for solving knapsack problem. $P = [40\ 10\ 50\ 30\ 60]$ $W = [80\ 10\ 40\ 20\ 90]$ M = 110
 - (c) Find the optimal way of multiplying following matrices using dynamic 07 programming. Also indicate optimal number of multiplications required.

A:3 x 2, B: 2 x 5, C:5 x 4, D: 4 x 3, E: 3 x 3

- Q.4 (a) Explain depth first traversal using suitable example. 03
 - (b) Explain Binomial Coefficient algorithm using dynamic programming. 04
 - (c) Find the longest common subsequence for the following two sequences 07 using dynamic programming. Show the complete process.
 X = 100101001
 Y = 101001
- Q.5 (a) Define P and NP problems. Also give example of each type of problem. 03
 - (b) Draw the state space tree diagram for 4 Queen problem and also show 04 the tree after applying backtracking.
 - (c) Explain Rabin Karp algorithm with example. What is expected 07 running time of this algorithm?

OR

- Q.5 (a) Define NP-Complete and NP-Hard problems. Also give examples.
 (b) Explain the naive string matching algorithm.
 04
 - (c) State whether Hamiltonian problem is a NP-Complete problem? 07 Justify your answer.

03