GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V (New) EXAMINATION - WINTER 2019

Subject Code: 2150703
Date: 25/11/2019
Subject Name: Analysis and Design of Algorithms
Time: 10:30 AM TO 01:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find Omega (Ω) notation of function $f(n)=2 n^{2}+6 n * \lg n+6 n$. 03
(b) Define Big-oh and Theta notations with graph. 04
(c) Write sequential search algorithm and analyze it for worst case time 07 complexity. Represent its time complexity using Big-oh (O) notation.
Q. 2 (a) Find upper bound of function $f(n)=\lg \left(n^{2}\right)+n^{2} \lg n$.
(b) If $\mathrm{P}(\mathrm{n})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{n}+\mathrm{a}_{2} \mathrm{n}^{2}+\ldots \ldots+\mathrm{a}_{\mathrm{m}} \mathrm{n}^{\mathrm{m}}$ then prove that $\mathrm{P}(\mathrm{n})=\mathbf{0 4}$ $\mathrm{O}\left(\mathrm{n}^{\mathrm{m}}\right)$. Here $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2} \ldots . . \mathrm{a}_{\mathrm{m}}$ are constants and $\mathrm{a}_{\mathrm{m}}>0$.
(c) Solve following recurrence relation using suitable method and express 07
your answer using Big-oh (O) notation.
$T(n)=T(n / 3)+T(2 n / 3)+\Theta(n)$

OR

(c) Solve following recurrence relation using suitable method and express your answer using Big-oh (O) notation.
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}$
Q. 3 (a) If $T_{1}(n)=O(f(n)) \& T_{2}(n)=O(g(n))$ then prove that $T_{1}(n)+T_{2}(n)=03$ $\max (\mathrm{O}(\mathrm{g}(\mathrm{n})), \mathrm{O}(\mathrm{f}(\mathrm{n})))$.
(b) Illustrate the working of the quick sort on input instance: $25,29,30$, 04
$35,42,47,50,52,60$. Comment on the nature of input i.e. best case,
average case or worst case.
(c) Write greedy algorithm for activity selection problem. Give its time complexity. For following intervals, select the activities according to your algorithm. $\mathrm{I}_{1}(1-3), \mathrm{I}_{2}(0-2), \mathrm{I}_{3}(3-6), \mathrm{I}_{4}(2-5), \mathrm{I}_{5}(5-8), \mathrm{I}_{6}(3-10), \mathrm{I}_{7}$ (7-9).

OR

Q. 3 (a) Arrange following growth rates in increasing order.
$\mathrm{O}\left(\mathrm{n}^{1 / 4}\right), \mathrm{O}\left(\mathrm{n}^{1.5}\right), \mathrm{O}\left(\mathrm{n}^{3} \lg \mathrm{n}\right), \mathrm{O}\left(\mathrm{n}^{1.02}\right), \Omega\left(\mathrm{n}^{6}\right), \Omega(\mathrm{n}!), \mathrm{O}(\sqrt{ } \mathrm{n}), \mathrm{O}\left(\mathrm{n}^{6 / 2}\right), \Omega\left(2^{\mathrm{n}}\right)$
(b) Illustrate the working of the merge sort algorithm on input instance: $10,27,30,88,17,98,42,54,72,95$. Also write best case time complexity of merge sort algorithm.

correspond to following graph using Prim's algorithm.

Q. 4 (a) What is Principle of Optimality? Explain it with example. 03
(b) Consider the instance of the $0 / 1$ (binary) knapsack problem as below 04with P depicting the value and W depicting the weight of each itemwhereas M denotes the total weight carrying capacity of the knapsack.Find optimal answer using greedy design technique. Also write thetime complexity of greedy approach for solving knapsack problem.$\mathrm{P}=[4010503060] \quad \mathrm{W}=[80104020$ 90 $] \quad \mathrm{M}=110$
(c) Find the optimal way of multiplying following matrices using dynamic 07 programming. Also indicate optimal number of multiplications required. A: 3×2, B: $2 \times 5, C: 5 \times 4$, D: 4×3, E: 3×3
OR
Q. 4 (a) Explain depth first traversal using suitable example. 03
(b) Explain Binomial Coefficient algorithm using dynamic programming. 04
(c) Find the longest common subsequence for the following two sequences 07using dynamic programming. Show the complete process.
$\mathrm{X}=100101001$
$\mathrm{Y}=101001$
Q. 5 (a) Define P and NP problems. Also give example of each type of problem. 03
(b) Draw the state space tree diagram for 4 Queen problem and also show 04the tree after applying backtracking.
(c) Explain Rabin - Karp algorithm with example. What is expected 07 running time of this algorithm?
OR
Q. 5 (a) Define NP-Complete and NP-Hard problems. Also give examples. 03
(b) Explain the naive string matching algorithm. 04
(c) State whether Hamiltonian problem is a NP-Complete problem? 07 Justify your answer.

