

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- V (New) EXAMINATION - WINTER 2019
Subject Code: 2151002

Subject Code: 2151002 Date: 25/		11/2019	
Subj	ect N	ame: Engineering Electromagnetics	
•		30 AM TO 01:00 PM Total Marks: 7	70
Instru			
	1. A	Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	, ,	Derive relationship between J & E for a metallic conductor.	03
	(b)	With the help of necessary formulas, explain conversion among various	04
	(a)	coordinate systems. Derive the boundary conditions at the interface between two dielectric	07
	(c)	materials with permittivities $\varepsilon 1$ and $\varepsilon 2$.	U/
		materials with permittivities &1 and &2.	
Q.2	(a)	Transform the vector $\mathbf{A} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$ into cylindrical coordinates.	03
	(b)	Given the potential $V = (10/r^2)\sin\theta\cos\phi$. Find D at $P(1,0,\pi/2)$ and $Q(2,\pi/2,0)$.	04
	(c)	Derive expression for E for infinitely long line charge distribution.	07
	(0)	OR	0.
	(c)	Evaluate both sides of divergence theorem for field $D = 2xy\mathbf{a}_x + x^2\mathbf{a}_y$ C/m ²	07
	` /	and rectangular parallelepiped formed by planes $x=0\&1,y=0\&2 \& z=0\&3$.	
Q.3	(a)	Derive Lorentz force equation.	03
	(b)	Write a note on permeability.	04
	(c)	Derive the expression of capacitance for following capacitors: a) parallel	07
		plate capacitor b) co-axial capacitor c) spherical capacitor.	
		OR	
Q.3	(a)	State and explain Biot Savart's law.	03
	(b)	Write a note on Magnetization.	04
	(c)	Three infinite uniform sheets of charges are located in the free space as	07
		follows: $3nC/m^2$ at z=-4, $6nC/m^2$ at z=1 & $-8nC/m^2$ at z=4. Determine E at	
		point P(2,5,-5) & Q(4,2,-3).	
Q.4	(a)	Write a short note on "Skin effect".	03
	(b)	What is dipole? Derive expression for electric field intensity E due to an	04
	(a)	electric dipole. Define magnetic flat, and magnetic field intensity. Also explain magnetic	07
	(c)	Define magnetic flux and magnetic field intensity. Also explain magnetic	U/
		boundary conditions in brief. OR	
Q.4	(a)	Write a short note on "The retarded potentials".	03
	(b)	Explain uniqueness theorem in brief.	04
	(c)	Define the term curl. Also explain the point form of Ampere's Circuital Law.	07
	(-)		
Q.5	(a)	Explain the wave motion in free space.	03
	(b)	For TEM waves, prove that $\mathbf{E} \cdot \mathbf{H} = 0$	04
	(c)	Enlist all four Maxwell's equations in point form and starting from Gauss	07
		law derive the Maxwell's equation $\nabla \cdot \mathbf{D} = \rho_{v}$.	
		OR	
Q.5	(a)	Explain Stoke's theorem.	03
	(b)	Explain vector magnetic potential in detail.	04
	(c)	State and prove pointing theorem relating to the flow of energy at a point in	07
		space in an electromagnetic field.	
		ata	