

www.FirstRanker.com

Enrolment FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- V (New) EXAMINATION – WINTER 2019 iect Code: 2151909 Date: 25/11/2019

Subject Code: 2151909

Subject Name: Heat Transfer

Time: 10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary. Use of steam table, heat transfer tables and charts are permitted.
- 3. Figures to the right indicate full marks.

MARKS

03

Total Marks: 70

- Q.1 (a) Distinguish between natural and forced convection heat transfer 03
 - (b) A double pipe counter flow heat exchanger, 10000 kg/h of an oil having a specific heat of 2095 J/Kg K is cooled from 80 °C to 50 °C by 8000 kg/h of water entering at 25 °C. Determine the heat exchanger area for an overall heat transfer co efficient of 300 W/m².K. Take Cp of water as 4180 J/Kg K.
 - (c) Assuming that a man can be represent by a cylinder of 30 cm in diameter and 1.7 m high with a surface temperature of 30 °C, calculate the heat he would be loss while standing in a 36 km/h wind at 10 °C. Use Nu_D = $0.027 (\text{Re}_{\text{D}})^{0.805} (\text{Pr}^{1/3})$

And physical properties of air at 20 °C are k=0.00259 W/mk Pr=0.707, υ = 0.000015 m^2/s

Q.2 (a) Define following: 1) Nusselt number 2) Reynolds number

- (b) Determine the heat loss from an insulated steel pipe, carrying hot liquid, to the surrounding per meter length of the pipe, given the following particular.
 I.D. of the pipe=10 cm Wall thickness = 1 cm Thickness of the insulation = 3 cm Temperature of hot liquid = 85 °C
 - Temperature of surroundings = 25 °CThermal conductivity of steel = 58 W/Mk
 - Thermal conductivity for insulating material = 0.2 W/Mk
 - Inside heat transfer coefficient = $720 \text{ W/m}^2 \text{ K}$
 - Outside heat transfer coefficient = $9 \text{ W/m}^2 \text{ K}$
- (c) Derive equations of temperature distribution and heat dissipation for **07** Fin insulated at tip.

OR

(c) Derive general heat conduction equation in Cartesian coordinates 07

- Q.3 (a) What is difference between conduction, convection and radiation 03 mode of heat transfer
 - (b) Calculate the rate of heat loss for a red brick wall of length 5 m, height 4 m and thickness 0.25 m. the temperature of the inner surface is 110 °C and that of outer surface is 40 °C. The thermal conductivity of red brick, k=0.7 W/Mk. Calculate also the temperature at an interior point of the wall, 20 cm distance from the inner wall.
 - (c) Using dimensional analysis, obtain a general form of equation for forced Convective heat transfer.

trank	er's d	choice	
	61 3 1	www.FirstRanker.com www.FirstRan	ker.com
Q.3	(a)	Explain in brief about thermal conductivity.	03
	(b)	Define Prandtl number. What is the physical interpretation when its	04
	(a)	Value is lesser of greater than one? Snow with heat sketches.	07
	(C)	berne Grashor number. Explain concept of merinal boundary	07
0.4	(a)	layer.	0.2
Q.4	(a)	Define absorptivity, emissivity and monochromatic emissive	03
	(b -)	power. "It is true that in sulation is maxided to reduce heat transfer rate but due	0.4
	(D)	to insulation heat transfer rate is not reduced always" Justify the	04
		statement analytically	
	(c)	Define total emissive power (E_b) and intensity of radiation (I_b) . Show	07
	(0)	that $E_b = \pi \times I_b$	07
		OR	
Q.4	(a)	Explain shape factor for radiation.	03
c	(b)	State and prove Kirchoff's law for radiation.	04
	(c)	A pipe carrying steam having an outside diameter of 20 cm runs	07
		in a large room and is exposed to air at a temperature of 30 °C.	
		The pipe surface temperature is 400 °C. Calculate the loss of heat	
		to the surrounding per meter length of pipe due to thermal	
		radiation. The emissivity of pipe surface is 0.8.	
		What would be the loss of heat due to radiation if the pipe is	
		enclosed in a 40 cm diameter brick conduit of emissivity 0.91.	
Q.5	(a)	Justify that good absorber is also good emitter for radiation heat	03
		transfer.	
	(b)	Explain drop wise and film wise condensation	04
	(c)	Derive an expression for log mean temperature difference of parallel	07
		flow heat exchanger.	
		OR	
Q.5	(a)	Why is counter-flow Heat Exchanger more effective than a parallel	03
	(L)	llow heat exchanger.	0.4
	(D)	Discuss the various regimes of boiling.	04
	(C)	Derive equation of effectiveness for parallel now heat exchanger	07

		<i>.N</i> .	
		2	