

www.FirstRanker.com

Enrolment.FirstRanker.com

TOOT

GUJAKAI IECHNOLOGICAL UNIVERSIIY BE - SEMESTER- III (New) EXAMINATION – WINTER 2019			
Subject Code: 2130003 Dat			Date: 26/11/2019
Subject Name: Mechanics of Solids			
Time: 02:30 PM TO 05:00 PM Tot			Fotal Marks: 70
Instructions	s:		
1. A	Attemp Maka s	t all questions. uitable assumptions wherever pacessary	
3.]	Figures	to the right indicate full marks.	
	8	0	MARKS
Q.1	(a)	Define: (i) Equilibriant force (ii) Principle superposition (iii) Principle of transmissibility	of 03
	(b)	State and explain Lami's theorem.	04
	(c)	Determine the resultant of the force system shown Fig:[1]	in 07
02	(9)	Explain · Varignon's theorem	03
Q	(b)	Define : (i) Angle of friction (ii) Limiting friction (iii) Coefficient of friction (iv) Angle of repos	04 e
	(c)	Four forces are acting on the rectangle plate as shown Fig:[2]. Find out magnitude, direction and location resultant with respect to point A.	in 07 of
	(c)	A 10 m long ladder rests against a vertical wall w which it makes an angle of 45°. If a man whose weight one half of that ladder, climbs on that ladder. At will distances along the ladder will be the man, when ladder is about to slip? ($\mu = 0.3$ between ladder & wall $\mu = 0.5$ between ladder & wall)	ith 07 t is hat the &
Q.3	(a)	Define : (i) Theorem of Parallel Axes (ii) Theorem Perpendicular Axes (iii) Radius of Gyration	of 03
	(b)	Determine the centroid of given lamina as shown Fig:[3].	in 04
	(c)	Determine the moment of inertia for given lamina abo axes passing through centroid as shown in Fig:[4] . OR	out 07
Q.3	(a)	Enlist the assumptions made in theory of pure torsion.	03
	(b)	State and explain theorems of Pappus-Guldinus.	04
	(c)	A hollow cylindrical steel shaft is 1.5m long. Inner a outer diameters of shaft are equal to 40 and 60m respectively.(i) Find out the largest torque which may applied to the shaft if the shearing stress is not to exce 120MPa (ii) Find out the corresponding minimum va- of the shearing stress in the shaft.	nm be be lue
Q.4	(a)	Explain : (i) Type of beams (ii) Type of loading on the	03

beams. Page 1 of 3

rstranker's (6) of Setermine support FirstRanker.com beam \$2000.FirstRanker.com Fig:[5].

(c) Draw shear force and bending moment diagram of the beam shown in Fig:[6], finding values at all important points on the beam.

OR

- Q.4 (a) Explain: Neutral axis, Neutral layer, Moment of 03 resistance
 - (b) A circular beam 200mm dia. is subjected to shear force of 9 KN. Calculate the value of maximum shear stress and sketch the variation of shear stress along the depth of beam.
 - (c) A beam of I-section, 5 m in length is simply supported at each end and bears a u.d.l. of 8kN/m as shown in Fig:[7]. Determine (i) maximum tensile and compressive bending stress, (ii) bending stress at a point 25 mm below the upper surface of the beam at the same section
- Q.5 (a) Define and explain : (i) Modulus of Elasticity (ii) 03 Poisson's ratio (iii) Modulus of rigidity
 - (b) A load of 1900 kN is applied on a short concrete column 300 mm x 200 mm. The column is reinforced with four steel bars of 10 mm diameter, one in each corner. Find the stresses in the concrete and steel bars. Take E for steel as 2.1 x 10⁵ N/mm² and for concrete as 1.4 x 10⁴ N/mm².
 - (c) A steel bar is placed between two copper bars each having the same area and length as the steel bar at 15°C. At this stage, they are rigidly connected together at both the ends. When the temperature is raised to 315°C, the length of the bars increases by 1.5 mm. Determine final stresses in the bar and original length of the bar. $E_{steel} = 210 \text{ GN/m}^2$, $E_{copper} = 110 \text{ GN/m}^2$,

 α (steel) = 0.000012 /°C, α (copper)= 0.0000175 /°C OR

- Q.5 (a) Define principal planes and principal stresses.
 (b) Determine the Poisson's ratio and Bulk modulus of a material, for which Young's modulus is 1.2x10⁵ N/mm² and Modulus of rigidity is 4.5x10⁴N/mm².
 - (c) For an element shown in Fig:[8], find (i) Principal 07 stresses and location of corresponding principal planes (ii) Maximum shear stress and location of planes containing it.

2 <u>kN</u>

