FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V (New) EXAMINATION - WINTER 2019			
Subject Code: 2153613 Date: 04/12					
Subject Name: Basics of Heat Transfer					
Time: 10:30 AM TO 01:00 PM Total Marks:					
Instruction0073:					
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.			
	3 .				
			MARKS		
Q.1	(a)	Explain Fourier's law of heat transfer.	03		
	(b)	Explain convection heat transfer with suitable example.	04		
	(c)	Derive the general heat conduction equation in Cartesian co-coordinates.	07		
Q.2	(a)	Derive an expression for steady state heat conduction through composite wall.	03		
	(b)	The wall of an industrial furnace is constructed from 0.2 m thick fireclay brick having a thermal conductivity of 2.0 W/mK. Measurements made during steady state operation reveal temperatures of 1500 and 1250 K at the inner and outer surfaces, respectively. What is the rate of heat loss through a wall which is 0.5 m by 4 m on a side?	04		
	(c)	Explain various types of extended surfaces. Derive the expression for heat transfer through the rectangular fin.	07		
	(-)	OR	07		
	(c)	What do you mean by critical radius of insulation? Explain the significance of critical radius, Derive expression of critical radius for Spherical shape.	07		
Q.3	(a)	The heat flux through a wood slab 50 mm thick, whose inner and outer surface temperatures are 40 and 20°C, respectively, has been determined to be 40 W/m ² . What is the thermalconductivity of the wood?	03		
	(b) (c)	Explain laws of radiation heat transfer in detail (any two). Calculate the rate of heat loss through the vertical walls of a boiler furnace of size 4 m by 3 m by 3 m high. The walls are constructed from an inner fire brick wall 25 cm thick of thermal conductivity 0.4 W/mK, a layer of ceramic blanket insulation of thermal conductivity 0.2 W/mK and 8 cm thick, and a steel protective layer of thermal conductivity 55 W/mK and 2 mm thick. The inside temperature of the fire brick layer was measured at 600^{0} C and the temperature of the outside of the insulation 60^{0} C. Also find the interface temperature of layers.	04 07		
OR					
Q.3	(a)	The convection heat transfer coefficient between a surface at 40° C and ambient air at 20° C is 20 W/m^2 K. Calculate the heat flux leaving the surface by convection.	03		
	(b) (c)	Explain Reynolds number, Nusselt Number in detail. Elaborate the different feeding method for multi effect evaporator with	04 07		
04	(a)	neat sketch. Elaborate plate type heat exchanger.	03		
Q.4	(a) (b)	Derive the expression for L.M.T.D. in counter current heat exchanger.	03 04		
	(c)	Derive the expression for Prandtl analogy	07		
			1		

P. Fir	rstF	Ranker. <mark>com</mark>	
First	trank	er's choice www.FirstRanker.com www.FirstRanker.com	com
Q.4	(a)	Explain boiling point elevation.	03
	(b)	Explain the shell and tube heat exchanger.	04
	(c)	Explain the construction and working of calendria type evaporators with neat sketch.	07
Q.5	(a)	What is condensation? List the factors on which condensation is depend.	03
	(b)	What is economy of evaporator? Explain any one method used to increase the economy of evaporator.	04
	(c)	Elaborate with neat sketch, falling film evaporator. OR	07
Q.5	(a)	Explain film wise and drop wise condensation.	03
	(b)	Define following terms 1. Effectiveness 2. Absorptivity 3. Reflectivity 4. Transmissibility	04
	(c)	A hot fluid enters a concentric pipe apparatus at a temperature of 148 °C and is to cooled to 93 °C by a cold fluid entering at 37°C and heated to 65 °C. Shall they be directed in parallel flow or counter flow?	07

www.FirstRanker.com