FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER- III (New) EXAMINATION - WINTER 2019				
S	Subject Code: 2130101 Date: 30/11/2019					
S	ubje	ect Name: Fundamentals of Fluid Mechanics				
T	Time: 02:30 PM TO 05:00 PM Total Marks: 70					
In	struc	ctions:				
		1. Attempt all questions.				
		2. Make suitable assumptions wherever necessary.				
		3. Figures to the right indicate full marks.				
0.1	(a)	Define viscosity and Derive unit of viscosity.	03			
Ľ	(b)	Differentiate following terms.	04			
	. ,	(i) Ideal Fluid and Real Fluid (ii) Model and Prototype				
	(c)	State Hydrostatic Law and prove Pascal's law	07			
	(C)	State Hydrostatie Daw and prove Fasear State.	07			
0.2	(a)	Derive an expression for capillary fall between two vertical parallel plates.	03			
~	(u) (h)	Explain Weber's number and model law.	04			
	(c)	The pressure difference Ap in a pipe of diameter D and length 1 due to turbulent	07			
	(0)	flow depends on the velocity y viscosity u density o and roughness k Using	07			
		Buckingham's π -theorem, obtain an expression for Δp .				
		OR				
	(c)	The Resisting force R of a supersonic plane during flight can be considered ass	07			
		dependent upon the length of the aircraft l, velocity v, air viscosity μ , air density ρ				
		& bulk modulus of air k. Express the functional relationship between these				
		variables & resisting force.				
Q.3	(a)	Define following terms:	03			
		(i) Buoyancy (ii) Metacentric Height (iii) Turbulent Flow				
	(b)	Differentiate following terms.	04			
		(i) Manometer and Piezometer (ii) Uniform and Non Uniform Flow				
	(c)	A circular plate 1.5 m diameter is immersed in water in such a way that it's	07			
		greatest and least depth below the free surface is 2 m & 0.75 m respectively.				
		Determine the total pressure on one face of the plate & position of the centre of				
		pressure.				
		OR OR				
Q.3	(a)	Define following terms:	03			
		(i) Absolute Pressure (ii) Discharge (iii) Laminar Flow				
	(b)	Compare Venturimeter and Orificemeter.	04			
	(c)	Derive Continuity equation for 2 and 3 Dimensional Flow with neat Sketch.	07			
Q.4	(a)	Explain Hydrostatic paradox.	03			
	(b)	Explain different types of fluid flow with examples.	04			
	(c)	Derive expression of Total pressure and Centre of pressure for Horizontal plane	07			
		surface submerged in liquid.				
		OR				
Q.4	(a)	Differentiate between distorted and undistorted model.	03			
	(b)	Explain Mach number.	04			
	(c)	Derive an expression for Bernoulli's theorem with the help of Euler's equation.	07			
		Clearly state assumptions made.				

Q ^F 5r	strar	Define: Velocity gradient and Enstrative coordination. www.FirstRanker.com	03
	(b)	The diameter of a pipe at the section 1-1 and 2-2 are 200 mm and 300 mm respectively. If the velocity of water flowing through the pipe at section 1-1 is 4 m/s, find (i) Discharge through the pipe, and (ii) Velocity of water at section 2-2 Write note on Venturimeter with next sketch and derive equation for theoretical	04
	(C)	discharge.	07
		OR	
Q.5	(a)	Differentiate between Notch and Weirs.	03
	(b)	Write short note on Frames of Reference.	04

(c) Derive equation for discharge over Triangular notch. 07

www.firstRanker.com