FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

	BE	- SEMESTER– V (New) EXAMINATION – WINTER 2019	
Subject	Code	e: 2154102 Date: 2	25/11/2019
Subject	Nam	e: Principles of Robotics	
Time: 10:30 AM TO 01:00 PM Total Ma			Aarks: 70
Instructions:			
1.	Atte	mpt all questions.	
2.	Mak	e suitable assumptions wherever necessary.	
3.	Figu	res to the right indicate full marks.	
			MARKS
0.1	(a)	Write the Asimov's laws of robotics.	03
	(b)	Explain any two Robot specifications.	04
	(c)	Demonstrate the robot cell construction and its working	07
	(-)	principle.	
		1 1	
02	(a)	What is forward kinematics and where it can be applied?	03
Q.2	(\mathbf{a})	Write the direct kinematic equation of a 3 DOF TRR	03
	(0)	configuration robot	04
	(c)	What is the inverse transformation and how should it be	07
	(0)	interpreted?	07
		OR	
	(c)	Explain different kinematic pair used in robot.	07
Q.3	(a)	Give the difference between the prismatic and rotary joints?	03
-	(b)	Define Linear and Angular velocity.	04
	(c)	Derive the expression for the velocity of the tip of the two link,	07
		planar, RR manipulator arm.	
		OR	
Q.3	(a)	Draw the singular configuration of 2 link planner arm.	03
	(b)	What is forward jacobian and Inverse jacobian?	04
	(c)	Define Jacobian and Write the manipulator Jacobian matrix for	07
		the 3-DOF articulated arm with suitable example.	
Q.4	(a)	Analyse the suitable method for trajectory planning.	03
	(b)	List out the advantages of recursive Newton Euler formulation.	04
	(c)	Describe in detail about the control of robot manipulators in	07
		joint space trajectories.	
0.4	(a)	Define 'Lecrence function'	03
Q.4	(a) (b)	Analyze the use of a p-degree polynomial as interpolation	03
	(U)	function	04
	(c)	Discuss in detail about the position and orientation planning	07
	(C)	Discuss in detail about the position and orientation plaining.	07
0.5	(a)	What are open and closed loop control?	03
C ¹²	(b)	Develop the block diagram of a manipulator control system.	04
	$(\tilde{\mathbf{c}})$	List the pros and cons involved in linear and nonlinear control of	07
	(-)	robot manipulation.	
		OR	
Q.5	(a)	Analyze the PID control schemes.	03
-	(b)	Describe the schematic of robot control system.	04
	(c)	Obtain the transfer function for position control, neglecting the	07
		armature inductance.	
