GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (OId) EXAMINATION - WINTER 2019

Subject Code: 150605
Date: 25/11/2019
Subject Name: Structural Analysis - III
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain with neat sketches the various mechanism of failure of plane frames in 07
plastic analysis.
(b) Derive an expression for Meridional stress and Hoop stress develop in a spherical 07 dome subjected to UDL.
Q. 2 (a) Find collapse load of fixed beam having length "L" and subjected to point load"W" acting at a distance "a" from left support and distance " b " from right supportby static method and kinematic method.
(b) Explain type of domes with neat sketches and state their uses. $\mathbf{0 7}$

OR

(b) Explain technical aspects of difference between curved beam and usual beam.
(b) Derive formula of $\mathrm{F} \varnothing, \mathrm{M} \varnothing$ and $\mathrm{T} \varnothing$ at any section, for the quarter circular cantilever07 beam curved in plan, subjected to uniformly distributed load w per unit run throughout its length, with usual notations.

OR

Q. 3 (a) State uses of domes and beams curved in plan 07
(b) Differentiate between stiffness method and flexibility method. 07
Q. 4 (a) Analyze the beam shown in fig. 1 using stiffness method. 07
(b) State and explain static and kinematic theorem of plastic analysis. $\mathbf{0 7}$

OR

Q. 4 (a) List and explain the stresses in spherical dome. 07
(b) Analyze the frame as shown in fig. 2 by stiffness method and determine support 07 moments only.
Q. 5 (a) Analyze the beam as shown in fig. 3 by flexibility method and determine moment 07 at support A \& B.
(b) Determine collapse load for a frame as shown in fig. 4 by kinematic method. $\mathbf{0 7}$

OR
Q. 5 (a) The conical dome has following details.

1) Span of Dome $=18 \mathrm{~m}$
2) Rise $=3.0 \mathrm{~m}$
3) LL or $\mathrm{WL}=1.5 \mathrm{kN} / \mathrm{m}^{2}$
4) Thickness of Dome $=100 \mathrm{~mm}$.

Calculate maximum meridional thrust and hoop force in the dome.
(b) A beam is quarterly curved in plan forming an arc of circle with radius $4.0 \mathrm{~m} . \quad \mathbf{0 7}$ The beam carries LL of $2.0 \mathrm{kN} / \mathrm{m}$ and having $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ cross section. Draw SF, BM and TM. Take G $=0.4 \mathrm{E}$ for concrete.

Fig. 1 (Q. 4 a)

$3 m$

A
Fig. 2 ($\mathbf{Q} .4 \mathrm{~b}$ OR)

Fig. 3 (Q. 5 a)

Fig. 4 (Q. 5 b)

