\qquad

GUJARAT T世CHFFiNotReqerreal UNIVEYRSIItRanker.com BE - SEMESTER-V (OId) EXAMINATION - WINTER 2019

Subject Code: 151002
Date: 04/12/2019

Subject Name: Engineering Electromagnetics Time: 10:30 AM TO 01:00 PM
 Total Marks: 70
 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain Cylindrical co-ordinate system with a neat sketch giving details of their unit 07vectors and point form and vector form representations.
(b) Define curl and give its physical interpretation. Also give relation of curl in all three 07co-ordinate system.
Q. 2 (a) State Coulomb's law and give its mathematical expression. From that deduce 07 expression of electric field intensity \mathbf{E} for point charges.
(b) Find Electric Field Intensity \mathbf{E} at a point on Z-axis, due to circular ring charge with 07 charge density $\rho \mathrm{L}$ C/m present in XY plane.
OR
(b) State and prove divergence theorem. Relate Gauss's law with divergence theorem. 07
Q. 3 (a) State \& explain the Biot-Savart's Law and derive the necessary equations of 07 Magnetic field Intensity \mathbf{H}.
(b) A circular loop located on $\mathrm{X}^{2}+\mathrm{Y}^{2}=9, \mathrm{Z}=0$ carries a current of 10 A along $\hat{\mathbf{a}}_{\hat{\text { of }}}$. 07
Determine \mathbf{H} at $(0,0,4)$ and $(0,0,-4)$.
OR
Q. 3 (a) A circular current carrying loop is lying on $x-y$ plane. Derive the equation of 07 Magnetic field intensity \mathbf{H} on the axis of a circular loop. Also find \mathbf{H} at the center of the loop.
(b) Evaluate Stoke's theorem for the field $\mathbf{H}=6 x y \hat{\mathbf{a}}_{\mathbf{x}}-3 y^{2} \hat{\mathbf{a}}_{\mathrm{y}} \mathrm{amp} / \mathrm{meter}$ if rectangular 07 path around the region is $2 \leq x \leq 5,-1 \leq y \leq 1$ and $z=0$. Also find out current I.
Q. 4 (a) Derive electrostatic Boundary conditions for Dielectric to Dielectric interface. 07
(b) Find the potential and volume charge density at $\mathrm{P}(0.5,1.5,1)$ in free space if 07
OR
Q. 4 (a) A boundary exist at $\mathrm{z}=0$ between two dielectric. $\varepsilon_{\mathrm{r} 1}=2.5$ in region $\mathrm{z}<0 . \varepsilon_{\mathrm{r} 2}=4$ in 07 region $\mathrm{z}>0$. The electric field in the region of $\varepsilon_{\mathrm{r} 1}$ is $\mathbf{E}_{\mathbf{1}}=-30 \hat{\mathbf{a}}_{\mathrm{x}}+50 \hat{a}_{\mathrm{y}}+70 \hat{\mathbf{a}}_{z} \mathrm{~V} / \mathrm{m}$. then find out
i. Normal component of E_{1}
ii. Tangential component of E_{1}
iii. Angle Θ_{1} between E_{1} and normal to the surface
iv. Normal component of D_{2}
v. Tangential component of D_{2}
vi. Angle Θ_{2} between E_{2} and normal to the surface
(b) Define Torque. Derive the equation of Torque on a close current carrying loop07which is placed in steady magnetic field.
Q. 5 (a) Derive Maxwell's equations in point and Integral form for time varying fields. 07
(b) Derive the equation of Capacitance (C) and Energy stored (W) for parallel plate 07
OR
Q. 5 (a) Explain wave propagation in free space with necessary equations. 07
(b) Derive point form of Ampere's Circuital Law. 07
