Enrolment No.

FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY anker.com

BE - SEMESTER-V (Old) EXAMINATION - WINTER 2019

Subject Code: 151002

Date: 04/12/2019

Total Marks: 70

Subject Name: Engineering Electromagnetics

Time: 10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** Explain Cylindrical co-ordinate system with a neat sketch giving details of their unit (a) 07 vectors and point form and vector form representations.
 - Define curl and give its physical interpretation. Also give relation of curl in all three 07 **(b)** co-ordinate system.
- State Coulomb's law and give its mathematical expression. From that deduce Q.2 07 (a) expression of electric field intensity **E** for point charges.
 - Find Electric Field Intensity E at a point on Z-axis, due to circular ring charge with **(b)** 07 charge density pL C/m present in XY plane.

OR

- **(b)** State and prove divergence theorem. Relate Gauss's law with divergence theorem. 07
- State & explain the Biot-Savart's Law and derive the necessary equations of Q.3 **(a)** 07 Magnetic field Intensity **H**.
 - A circular loop located on $X^2 + Y^2 = 9$, Z=0 carries a current of 10 A along \hat{a}_{θ} . **(b)** 07 Determine **H** at (0,0,4) and (0,0,-4).

OR

- Q.3 A circular current carrying loop is lying on x-y plane. Derive the equation of 07 (a) Magnetic field intensity **H** on the axis of a circular loop. Also find **H** at the center of the loop.
 - **(b)** Evaluate Stoke's theorem for the field $\mathbf{H} = 6xy \, \hat{\mathbf{a}}_x - 3y^2 \, \hat{\mathbf{a}}_y$ amp/meter if rectangular 07 path around the region is $2 \le x \le 5$, $-1 \le y \le 1$ and z=0. Also find out current I.
- Derive electrostatic Boundary conditions for Dielectric to Dielectric interface. **Q.4** 07 **(a)**
 - Find the potential and volume charge density at P (0.5, 1.5, 1) in free space if 07 **(b)** potential field is given as $V = 6 \rho \phi z$.

OR

- A boundary exist at z=0 between two dielectric. $\varepsilon_{r1} = 2.5$ in region z<0. $\varepsilon_{r2} = 4$ in **Q.4 (a)** 07 region z>0. The electric field in the region of ε_{r1} is $\mathbf{E}_1 = -30 \, \mathbf{\hat{a}}_x + 50 \, \mathbf{\hat{a}}_y + 70 \, \mathbf{\hat{a}}_z \, \text{V/m}$. then find out
 - i. Normal component of E_1
 - ii. Tangential component of E₁
 - iii. Angle Θ_1 between E_1 and normal to the surface
 - iv. Normal component of D₂
 - v. Tangential component of D_2
 - vi. Angle Θ_2 between E_2 and normal to the surface
 - Define Torque. Derive the equation of Torque on a close current carrying loop **(b)** 07 which is placed in steady magnetic field.
- Derive Maxwell's equations in point and Integral form for time varying fields. Q.5 07 (a)
 - Derive the equation of Capacitance (C) and Energy stored (W) for parallel plate **(b)** 07 capacitor.

OR

- Q.5 Explain wave propagation in free space with necessary equations. **(a)**
 - Derive point form of Ampere's Circuital Law. **(b)**

www.FirstRanker.com

07

07