Seat No.: \qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (Old) EXAMINATION - WINTER 2019

Subject Code: 151601
Date: 27/11/2019
Subject Name: Computer Oriented Statistical Methods
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain the concept of significant digits. Also explain the difference between accuracy and precision.
(b) Write an algorithm of Regula False position method.
Q. 2 (a) Find a root of $x^{4}-x^{3}+10 x+7=0$, correct up to three decimal places between 2 and -1 by the Newton-Raphson method.
(b) Find all roots of the equation $x^{3}-2 x^{2}-5 x+6=0$ by Graeffe's method, squaring

OR

(b) Using bisection method, find an approximate root of the equation $\sin x=1 / x$, that
lies between $x=1$ and $x=1.5$. Carry out computations up to the $7^{\text {th }}$ stage.
Q. 3 (a) The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in ${ }^{0} \mathrm{C}$ and p is the percentage of lead in the alloy.

$\mathrm{p}(\%):$	60	70	80	90
$\mathrm{t}:$	226	250	276	304

Find the melting point of the alloy containing 84% of lead, using Newton's interpolation formula.
(b) Using Lagrange interpolation method findf(x) and hence find y at $x=4$ from the given data below.

$\mathrm{x}:$	1.5	3	6
$\mathrm{y}:$	-0.25	2	20

OR
Q. 3 (a) If P is the pull required to Cift a load W by means of pulley block, find a linear law of the form $\mathrm{P}=\mathrm{mW}+\mathrm{c}$ connecting P and W using following data:

$\mathrm{P}:$	12	15	21	2
$\mathrm{~W}:$	50	70	100	120

Where P and W are taken in kg-wt. Compute P when $\mathrm{W}=150 \mathrm{~kg}$.
(b) Find $\cos (1.74)$, from the following data using proper numerical method:

$\mathrm{x}:$	1.7	1.74	1.78	1.82	1.86
$\sin \mathrm{x}:$	0.9916	0.9857	0.9781	0.9691	0.9584

Q. 4 (a) What is meaning of diagonally dominant system? Solve the following system of equation using Gauss Jacobi method
$20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$
(b) Solve the equation $d y / d x=x y+y^{2}$ where $y=0$ when $x=1$ find $y(0.1)$ using

Runge-Kutta method.
OR
Q. 4 (a) Given $d y / d x=2 \mathrm{e}^{\mathrm{x}}-\mathrm{y}$ with $\mathrm{y}(0)=2$, $\mathrm{y}(0.1)=2.01$, $\mathrm{y}(0.2)=2.04$, $\mathrm{y}(0.3)=2.09$.
(b) Following table shows speed in $\mathrm{km} / \mathrm{min}$ and time in minute of a moped

$\mathrm{t}:$	2	4	6	8	10	12	14	16	18	20

v:	10	18	25	29	32	20	11					

Using Simpson's $1 / 3^{\text {rd }}$ and Simpson's $3 / 8^{\text {th }}$ rule to find the distance travelled by the moped in 20 minutes.
Q. 5 (a) Compute Spearman's rank correlation for the following observations. Marks are awarded out of 35 .

Candidate:	1	2	3	4	5	6	7	8
Judge X:	20	22	28	23	30	30	23	24
Judge Y:	28	24	24	25	26	27	32	30

(b) Calculate the first four moments about the mean.

Marks:	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No. of students:	8	12	20	30	15	10	5

OR
Q. 5 (a) Obtain regression equation of Y on X and estimate Y when $\mathrm{X}=55$ from the following:

$\mathrm{X}:$	40	50	38	60	65	50	35
$\mathrm{Y}:$	38	60	55	70	60	48	30

(b) Obtain Seasonal fluctuation from the following data using moving average method:

Year	I	II	III	IV
1984	65	58	56	61
1985	68	63	63	67
1986	70	59	56	52
1987	60	55	51	58

