FirstRanker.com

s choice www.FirstRanker.com Enrolment.PitstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019

Subject	Code:	2160101	Date: 04/12/2019
Subject Time: 02 Instructio	Name: 2:30 PM ns:	Aerodynamics II TO 05:00 PM	Total Marks: 70
1. 2. 3.	Attemp Make s Figures	t all questions. uitable assumptions wherever necessary. to the right indicate full marks.	
Q.	1 (a) (b)	Define Airfoil. Difference between Airfoil and W With neat sketch explain Airfoil nomenclature.	ing. 03 04
	(c)	Explain Airfoil characteristics with appropriate g	raph. 07
Q.	2 (a) (b)	Define Vortex filament. Consider NACA 2414 airfoil with a chord of 0.64 airstream at standard sea level conditions. The fre velocity is 70 m/s. The lift per unit span is 12: Calculate the co-efficient of lift	03 04 m in an 04 eestream 54 N/m.
	(c)	Derive Linearized velocity potential equations.	07
	(c)	Prove the relation 'Local jump in tangential across the vortex sheet is equal to the local sheet s using vortex sheet.	velocity 07 trength"
Q.	3 (a)	What is the physical phenomena of $V_1=V_2$ i Condition?	n Kutta 03
	(b) (c)	Without friction could we have Lift? Explain prop Explain with neat sketch Kelvin's circulation theo	perly 04 prem. 07
0.	3 (a)	OR Define Downwash and Induced drag.	03
Č.	(h)	Explain stream function with equations	04
	(c)	Prove the relation "Camber line is a streamlin flow" in thin airfoil theory.	e of the 07
0.	4 (a)	Define Biot-Savart Law with equation.	03
· ·	(b)	Draw and explain an elliptic lift distribution.	04
	(c)	Explain with appropriate equation Prandtl's C Lifting Line theory.	Classical 07
0	•	UR UR	03
Q.	4 (a) (b)	Explain General lift distributions with app equations	oropriate 04
	(c)	Explain with "Lift Curves for an infinite wing finite elliptic wing".	versus a 07
0.	5 (a)	Difference between subsonic and supersonic flow	03
<u>ر</u>	(b)	Define Critical Mach number with appropriate eq	uation. 04
	(č)	Derive Prandtl Glauert Compressibility correction OR	ns rule. 07
Q.	5 (a)	Using Linearized theory, calculate the lift coefficit flat plate at a 5^0 angle of attack in a Mach 3 flow.	ent for a 03
	(b)	Draw "Linearized supersonic flow over an airfoil	". 04
	(c)	Derive with neat sketch "Numerical vortex panel equation".	method 07
