www.FirstRanker.com

Enrolwww.PfrstRanker.com

Date: 11/12/2019

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (New) EXAMINATION – WINTER 2019

Subject Code: 2160104

ranker's choice

Subject Name: Basic Control Theory

Time: 02:30 PM TO 05:00 PM

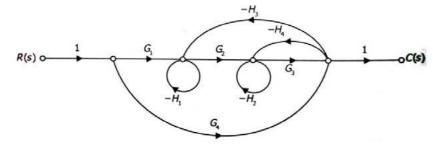
irstRanker.<mark>com</mark>

Instructions:

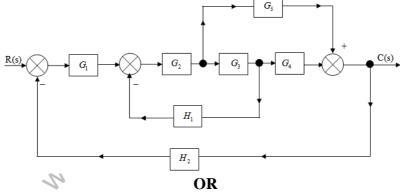
- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

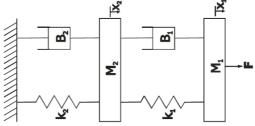
04


03

04


07

07


- Q.1 (a) Differentiate Open-loop and Closed-loop control system. 03
 - (b) List rules for Block Diagram Reduction Techniques
 - (c) Using Mason's Gain Formula, Find the transfer function C(S)/R(S) for the 07 Signal Flow Graph shown in figure.

- Q.2 (a) Explain standard test signals.
 - (b) State and explain Mason's gain formula.
 - (c) Reduce the Block Diagram to its Simple Form and obtain C(S)/R(S).

(c) For the mechanical system shown in figure, (1) Draw the node diagram
(2) Write System equations of performance (3) Draw Force to Voltage analogous circuit.

- Q.3 (a) By means of Routh criterion, determine the stability of the system described 03 by characteristic equation, $S^4 + 2S^3 + 8S^2 + 4S + 3 = 0$
 - (b) Explain types of the system and steady state error constants for the same. 04

Derive transfer function of impulse response.

OR

		ŬŔ.	
Q.3	(a)	Describe steady state error.	03
	(b)	Explain ON-OFF controller with neutral zone.	04
	(c)	A unity feedback control system has $G(s) = K/s(s+10)(s^2+4s+5)$. Determine	07
		the Range of K for closed loop system to stable.	
Q.4	(a)	Draw the polar plot of $G(s) = 1/s$	03
	(b)	Which two plots constitute Bode plot? What steps are followed to sketch Bode	04
		plot?	
	(c)	Plot the root locus for given transfer function. $G(s) = K/s(s+1)(s+4)$.	07
		OR	
Q.4	(a)	For a unity feedback control system $G(s) = \frac{10}{s^2 + 4s + 50}$, obtain steady	03
		state error for step input.	
	(b)	Write the rules for drawing root locus	04
	(c)	Draw the bode plot for the system having $G(s)H(s)=20/s(0.1s+1)$. Determine	07
		the Gain Margin and Phase Margin.	
Q.5	(a)	State Nyquist stability criterian.	03
•	(b)	Compare classical control theory with conventional control theory.	04
	(c)	Find the eigen values for the following matrix.	07
		$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$	
		OR	
Q.5	(a)	Define state and state variables.	03
	(b)	Obtain second order step response for the under damped case.	04

- .dva. (c) Explain PI Controller. List Advantages, Disadvantages and Applications of it. 07