GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019
Subject Code: 2160503
Date: 06/12/2019
Subject Name: Process Equipment Design -I
Time: 02:30 PM TO 05:30 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Abstract

Q. 1 (a) Describe the situation if fluid velocity through circular pipe is beyond the recommended velocity range for a specified operating condition.

(b) Explain in brief about the equivalent length of pipes and joints.
(c) A centrifugal pump is drawing water from an overhead tank, exposed to atmosphere. Vertical distance between free surface of liquid in the tank and centre line of the pump is 10 m . Capacity of centrifugal pump is $10000 \mathrm{~kg} / \mathrm{h}$. Maximum operating temperature is $50^{\circ} \mathrm{C}$. Vapor pressure of water at $50^{\circ} \mathrm{C}$ is 92.51 torr. Total length of suction pipe 10.5 m , having two 90° elbows. Material of pipe is carbon steel. Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Viscosity of water $=0.558 \mathrm{cP} . \mathrm{K}-$ Value for 90° elbow is 0.75 . friction factor $\mathrm{f}=0.0394 \mathrm{Re}^{-0.16}$.
For the velocity of water in suction line $1 \mathrm{~m} / \mathrm{s}$, Determine
(1) The size of suction pipe
(2) Total frictional pressure drop in suction line
(3) $(\mathrm{NPSH})_{\mathrm{A}}$ of centrifugal pump.
Q. 2 (a) How baffle cut and baffle spacing affect tube outside heat transfer coefficient.
(b) Determine the designation of the shell \& tube heat exchanger based on following TEMA notations:

1. BEM
2. BFL
3. AKT
4. CFU
(c) 1-2 shell and tube heat exchanger is used to cool methanol condensate from $95^{\circ} \mathrm{C}$
to $40^{\circ} \mathrm{C}$. Flow rate of methanol is $100000 \mathrm{~kg} / \mathrm{h}$. Brackish water is used as coolant with temperature rise from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Property	Methanol	Brackish Water
Heat Capacity, $\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$	2.84	4.2
Density, $\mathrm{kg} / \mathrm{m}^{3}$	750	995
Viscosity, $\mathrm{mN} \cdot \mathrm{s} / \mathrm{m}$	0.34	0.8
Thermal conductivity, $\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$	0.19	0.59

Choose 20 mm od, 16 mm id, 4.88 m long cupro-nickle tubes with triangular pitch $\mathrm{Pt}=1.25 \mathrm{~d}_{\mathrm{o}}$. Based on overall heat transfer coefficient $600 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
Calculate (1) Number of tubes (2) Shell Diameter
K_{1} and n_{1} for tube bundle diameter: (For triangular pitch $\mathrm{Pt}=1.25 \mathrm{~d}_{\mathrm{O}}$)

No. of tube side passes	1	2	4	6	8
$\mathrm{~K}_{1}$	0.319	0.249	0.175	0.0743	0.0365
n_{1}	2.142	2.207	2.285	2.499	2.675

OR

(c) Describe advantages and disadvantages of air cooled heat exchanger. $\mathbf{0 7}$
Q. 3 (a) Describe functions of down comer \& mention types of down comers. 03
(b) Discuss in brief the factors affecting selection of tray type. $\mathbf{0 4}$
(c) Acetic acid to be separated from a process stream containing 80% acetic acid and
 mass). Feed is liquid at $30^{\circ} \mathrm{C}$. Estimate the number of theoretical stages required both graphically and empirically.

Mole fraction of water in liquid, x	Mole fraction of water in vapor, y
0.0	0.0
0.1881	0.3063
0.3084	0.4467
0.4498	0.5973
0.5195	0.6580
0.5824	0.7112
0.6750	0.7797
0.7261	0.8239
0.7951	0.8671
0.8556	0.9042
0.8787	0.9186
0.9134	0.9409
0.9578	0.9708
1.0	1.0

Take $\mathrm{q}=1.272 \& \mathrm{R}=2 \mathrm{R}_{\mathrm{m}}$

OR

Q. 3 (a) Describe determination of minimum reflux ratio by McCabe-Thiele method. 03
(b) Explain the method for checking liquid entrainment \& weeping for sieve plate.
(c) A continuous rectifying column handles a mixture consisting of 40 per cent of benzene by mass and 60 per cent of toluene at the rate of $4 \mathrm{~kg} / \mathrm{s}$ and separates it into a product containing 97 per cent of benzene and a liquid containing 98 per cent toluene. The feed is liquid at its boiling-point.
(a) Calculate the mass flows of distillate and waste liquor.
(b) If a reflux ratio of 3.5 is employed, how many plates are required in the rectifying part of the column?

Mole fraction of benzene in liquid	Mole fraction of benzene in vapor
0.0	0.0
0.1	0.22
0.2	0.38
0.3	0.51
0.4	0.63
0.5	0.70
0.6	0.78
0.7	0.85
0.8	0.91
0.9	0.96
1.0	1.0

Q. 4 (a) How distribution coefficient affects liquid liquid extraction. 03
(b) Classify industrially important extractors. $\mathbf{0 4}$
(c) Explain process design of settler.

OR

Q. 4 (a) How to decide optimum solvent amount based on number of theoretical stages for 03 liquid liquid extraction.
(b) Discuss about various liquid distributors in detail. $\mathbf{0 4}$
(c) Discuss about process design of venturi scrubber. $\mathbf{0 7}$
Q. 5 (a) List out various equipments used as an absorber/ scrubber. 03
(b) Discuss advantages of Falling film absorber over Packed tower type absorber. $\mathbf{0 4}$
 of SO_{2}, by scrubbing it with water in a countercurrent absorption tower. The gas is fed into the bottom of the tower, and in the exit gas from the top the SO_{2} exerts a partial pressure of $1.14 \mathrm{kN} / \mathrm{m}^{2}$. The water fed to the top of the tower is free from SO_{2}, and the exit liquor from the base contains $0.001145 \mathrm{kmol} \mathrm{SO} 2 / \mathrm{kmol}$ water. The process takes place at 293 K , at which the vapour pressure of water is 2.3 $\mathrm{kN} / \mathrm{m}^{2}$. The water flow rate is $0.43 \mathrm{kmol} / \mathrm{s}$.
If the area of the tower is $1.85 \mathrm{~m}^{2}$ and the overall coefficient of absorption for these conditions K " ${ }^{\mathrm{La}}$ a is $0.19 \mathrm{kmol} \mathrm{SO}_{2} / \mathrm{sm}^{3}\left(\mathrm{kmol}\right.$ of $\left.\mathrm{SO}_{2} / \mathrm{kmol} \mathrm{H}_{2} \mathrm{O}\right)$, what is the height of the column required?
The equilibrium data for SO_{2} and water at 293 K are:

$\mathrm{kmol} \mathrm{SO}_{2} / 1000 \mathrm{kmol} \mathrm{H}_{2} \mathrm{O}$	0.056	0.14	0.28	0.42	0.56	0.84	1.405
$\mathrm{kmol} \mathrm{SO}_{2} / 1000 \mathrm{kmol}$ Inert gas	0.7	1.6	4.3	7.9	11.6	19.4	35.3

OR

Q. 5 (a) Differentiate Random and Regular packing. 03
(b) Discuss about how to select the solvent flowrate for absorption operation. $\mathbf{0 4}$
(c) Explain design procedure for Absorption tower for finding the height (Cornell's 07 method) and diameter of column.

