

www.FirstRanker.com

Enrolment. FirstRanker.com

MARKS

03

04

07

03

04

07

07

04

07

**GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019** Date: 13/12/2019 Subject Code: 2160506 Subject Name: Chemical Reaction Engineering - I **Total Marks: 70** Time: 02:30 PM TO 05:00 PM **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Q.1 **(a)** Discuss variables affecting the rate of reaction. A rocket engine burns a stoichiometric mixture of fuel (liquid **(b)** hydrogen) in oxidant (liquid oxygen). The combustion chamber is cylindrical, 75 cm long and 60 cm in diameter, and the combustion process produces 108 kg/s of exhaust gases. If combustion is complete, find the rate of reaction of hydrogen and of oxygen.  $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$ For a uni-molecular irreversible first order reaction in series (c)  $A \rightarrow R \rightarrow S$ ; Derive an expression for concentration of reactant A, intermediate product R and final product S as a function of time. Find the expression in terms of time when formation of R becomes maximum. Differentiate molecularity and order of reaction. Q.2 **(a)** Give examples for catalytic homogeneous and heterogeneous **(b)** reaction. A homogeneous gas reaction A → 3R has a reported rate at (c) 215<sup>o</sup>C  $-r_A = 10^{-2}C_A^{1/2}$ , [mol/liter sec] Find the space-time needed for 80% conversion of a 50% A, 50% inert feed to a plug flow reactor operating at 215°C and 5 atm  $(C_{Ao} = 0.0625 \text{ mol/liter}).$ OR What is an autocatalytic reaction? For an autocatalytic reaction (c)  $A + R \rightarrow R + R$  show that  $\ln \left| \frac{(M + XA)}{M(1 - XA)} \right| = CA0 (M + 1)kt$ 

Q.3 Consider a feed  $C_{Ao} = 100$ ,  $C_{BO} = 200$ ,  $C_{io} = 100$  to a steady-flow 03 (a) reactor. The isothermal gas-phase reaction is  $A + 3B \longrightarrow 6R$ If  $C_A = 40$  at the reactor exit, what is  $C_B$ ,  $X_A$ , and  $X_B$  there?

- Write in brief about Shifting order reaction. **(b)**
- Reactant A decomposes in a batch reactor. A --- Product (c) The composition of A in the reactor is measured at various times. Find a rate equation to represent the data using integral method of analysis

| or analysis.                       |    |    |     |     |     |     |     |
|------------------------------------|----|----|-----|-----|-----|-----|-----|
| Time, t sec                        | 0  | 20 | 40  | 60  | 120 | 180 | 300 |
| Conc. C <sub>A</sub><br>mol/ litre | 11 | 9  | 7.2 | 6.5 | 4.3 | 3   | 2   |
| OR                                 |    |    |     |     |     |     |     |



| 11.50    | . u            |                                                                             |                      |  |  |  |
|----------|----------------|-----------------------------------------------------------------------------|----------------------|--|--|--|
| irstoani | (er's (        | Give examples for series sprallel and autocatalytic weekippest Ran          | kel <sup>3</sup> com |  |  |  |
|          | <b>(b)</b>     | Explain Space time and space velocity in detail. 04                         |                      |  |  |  |
|          | (c)            | Derive general equation showing the time required to achieve a              | 07                   |  |  |  |
|          |                | conversion X <sub>A</sub> for either isothermal or non-isothermal operation |                      |  |  |  |
|          |                | for ideal batch reactor with graphical representation.                      |                      |  |  |  |
| 04       | (a)            | Define fractional yield and selectivity in detail                           | 03                   |  |  |  |
| Q.4      | (a)<br>(b)     | Explain Dug Flow Ponotors in Spring and in Derallal with                    | 03                   |  |  |  |
|          | (U)            | equation                                                                    | 04                   |  |  |  |
|          | $(\mathbf{a})$ | Discuss in detailed about product distribution for parallel                 | 07                   |  |  |  |
|          | $(\mathbf{c})$ | reaction                                                                    | 07                   |  |  |  |
|          |                | DP                                                                          |                      |  |  |  |
| 0.4      | (-)            | UK<br>Liquid A decomposed by first order birstics, and in a batch           | 0.2                  |  |  |  |
| Q.4      | (a)            | Liquid A decomposes by first-order kinetics, and in a batch                 | 03                   |  |  |  |
|          |                | reactor 50% of A is converted in a 5-minute run. How much                   |                      |  |  |  |
|          |                | longer would it take to reach 75% conversion?                               | 0.4                  |  |  |  |
|          | (b)            | Discuss method of maximization of rectangles applied to find the            | 04                   |  |  |  |
|          |                | optimum intermediate conversion and optimum sizes of two                    |                      |  |  |  |
|          |                | mixed flow reactors in series.                                              | ~                    |  |  |  |
|          | (c)            | Give detail classification of reactions.                                    | 07                   |  |  |  |
| 0.5      | (a)            | Give criteria for best Arrangement of a Set of Ideal Reactors.              | 03                   |  |  |  |
| C        | (b)            | Give comparison for mixed Vs. plug flow reactor.                            | 04                   |  |  |  |
|          | (c)            | Derive equation for complete conversion for adiabatic operation.            | 07                   |  |  |  |
|          | (0)            | OR                                                                          | 0.                   |  |  |  |
| 0.5      | <b>(a)</b>     | Write in brief about thermodynamic equilibrium constant.                    | 03                   |  |  |  |
| 2.0      | (h)            | Write physical significance of activation energy Also discuss               | 04                   |  |  |  |
|          | (0)            | temperature dependency of activation energy using Arrhenius                 | ••                   |  |  |  |
|          |                | theory                                                                      |                      |  |  |  |
|          | (c)            | Derive performance equation for Recycle reactor.                            | 07                   |  |  |  |
|          | (-)            |                                                                             | •                    |  |  |  |
|          |                | ******                                                                      |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                | Xe                                                                          |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                | Q-0                                                                         |                      |  |  |  |
|          |                | SI                                                                          |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                | 14                                                                          |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |
|          |                |                                                                             |                      |  |  |  |