

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019

Subject Code: 2160609 Date: 13/12/2019

Subject Name: Computational Mechanics

Time: 02:30 AM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		w .	
Q.1	(a) (b)	Enlist various steps of finite element method. Write the steps in detail to analyze plane truss by using Stiffness member	03 04
	. (-)	approach.	
	(c)	Explain how following issues are handled in analysis (i) Sinking of support (ii) Presence of inclined support	07
Q.2	(a)	Determine [SMS]i for the grid shown in figure.1.	03
2. -	(b)	Explain symmetry and anti-symmetry with suitable examples.	04
	(c)	Explain various types of non-linearity with neat sketches. OR	07
	(c)	Derive member stiffness matrix of the frame member with usual notations.	07
Q.3	(a)	Formulate combined joint load vector for beam shown in figure 2	03
	(b)	Determine joint displacements for the beam shown in figure.2.	04
	(c)	Determine support reaction and draw SFD and BMD for the beam shown in figure.2.	07
81		OR	
Q.3	(a)	Formulate combined joint load vector for the frame shown in figure 3	03
	(b)	Determine joint displacements for the frame shown in figure.3	04
	(c)	Determine support reaction and draw SFD and BMD for the frame shown in figure.3	07
Q.4	(a)	What is Finite Element Method, Explain in detail? Also discuss advantages and disadvantages.	03
	(b)	Explain meaning of convergence and convergence criteria in detail.	04
	(c)	Determine the joint displacements of the truss shown in figure-4 by member stiffness method. Assume that all members have the same axial	07
12.00		rigidity AE=constant.	
~ 4		OR	03
Q.4	(a)	Derive shape functions for 2-noded bar element. Determine the shape functions for a Constant Strain Triangular (CST)	04
	(b)	element in cartesian coordinate systems.	U
	(0)	Explain: [SMS], [SRF], [RT], {AJ}, {AE}, {AFC}, {AR}	07
	(c)		
Q.5	(a)	For the plane stress CST element shown in figure-5, Determine the strain	03
		displacement matrix.	0.4
	(b)	For the plane stress CST element shown in figure-5, Determine the stiffness matrix.	04
	(c)	For the plane stress CST element shown in figure-5, Determine the load	07
20 20	11.47	vector.	
	N 12	OR	0.3
Q.5	(a)	Using FEM, determine nodal displacements in elements for the Mild Steel bar assembly shown in the figure 6. consider E= 20000 N/mm ² .	03

www.FirstRanker.com

- (b) Using FEM, determine stresses in elements for the Mild Steel bar assembly shown in the figure 6. consider E= 20000 N/mm².
- (c) Derive stiffness matrix for grid member using usual notations. 07

