GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019

Subject Code: 2160704
Date: 09/12/2019
Subject Name: Theory of Computation
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS

Q. 1 (a) Define - bijection function. Check whether the function $f: Z \rightarrow Z$ defined03 by $f(x)=2 x$ is a bijection function or not. Justify your answer.
(b) Draw an FA that recognizes the language of all strings containing even no
of 0 's and even no of 1 's over $\sum=\{0,1\}$. Also write a regular expression for the same language.
(c) Write the principle of Mathematical Induction. Prove using mathematical induction that for every $\mathrm{n} \geq 0$,
$\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$
(Consider the sum on the left is 0 for $\mathrm{n}=0$)
Q. 2 (a) Find regular expression and also derive the words corresponding to the
language defined recursively below over $\sum=\{\mathrm{a}, \mathrm{b}\}$.
i. $\quad a \in L$
ii. For any $\mathrm{x} \in \mathrm{L}$, xa and xb are élements of L
(b) Define - Equivalence relation. A relation on the set $\{1,2,3\}$ is given as $\mathrm{R}=$
$\{(a, b) \mid a-b$ is an even no $\}$. Check whether R is equivalence relation or not. Give reasons.
(c) Give transition table for PDA recognizing the following language and trace the move of the machine for input string abcba:
$L=\left\{x c x^{r} \mid x \in\{a, b\}^{*}\right\}$
OR
(c) Give transition table for PDA accepting the language of all odd-length strings over $\{\mathrm{a}, \mathrm{b}\}$ with middle symbol a . Also draw a PDA for the same.
Q. 3 (a) Let FA_{1} and FA_{2} be the FAs as shown in the figure recognizing the languages
L_{1} and L_{2} respectively. Draw an FA recognizing the language, $\mathrm{L}_{1} U \mathrm{~L}_{2}$.
FA_{1} :

FA_{2} :

(b) Define - Moore madWMw.EirstRankeroqoming Moorwwhbrirsthenker.coma equivalent Mealy machine:

Old state	After input a	After input b	Output
	New state	New state	
$-\mathrm{q}_{0}$	q_{1}	q_{2}	0
q_{1}	q_{3}	q_{2}	1
q_{2}	q_{2}	q_{3}	0
q_{3}	q_{3}	q_{3}	1

(c) Convert the following NFA $-\Lambda$ into its equivalent DFA that accepts the same language:

OR
Q. 3 (a) Prove that - "If there is a CFG for the language L that has no Λ-productions, then there is a CFG for L with no Λ-productions and no unit productions". Support your answer with the help of the following CFG:
$\mathrm{S} \rightarrow \mathrm{A} \mid \mathrm{bb}$
$A \rightarrow B \mid b$
$B \rightarrow \mathrm{~S} \mid \mathrm{a}$
(b) Write CFG for the following languages :
i. $\quad\left\{a^{i} b^{j} c^{k} \mid i=j+k\right\}$
ii. $\quad\left\{a^{i} b^{j} c^{k} \mid j=i\right.$ or $\left.j=k\right\}$
(c) Define - ambiguous grammar, leftmost derivation. Check whether the following grammars are ambiguous or not. Justify your answer with proper reason.
i. $\quad \mathrm{S} \rightarrow \mathrm{ABA}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \Lambda$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \Lambda$
ii. $S \rightarrow A \mid B$
$\mathrm{A} \rightarrow \mathrm{aAb} \mid \mathrm{aabb}$
$\mathrm{B} \rightarrow \mathrm{abB} \mid \Lambda$
Q. 4 (a) Describe the language generated by the following grammars:
i. $\quad \mathrm{S} \rightarrow \mathrm{aA}|\mathrm{bC}| b$
ii. $\quad S \rightarrow$ aT|bT| Λ
$\mathrm{A} \rightarrow a S \mid \mathrm{bB}$
$\mathrm{B} \rightarrow a C|\mathrm{bA}| a$
$\mathrm{C} \rightarrow \mathrm{aB} \mid \mathrm{bS}$
(b) Discuss - Nondeterministic Turing Machines and Universal Turing Machines language using the minimization algorithm:

OR
Q. 4 (a) Find the CFG for the regular expression : $(011+1)^{*}(01)^{*}$
(b) Prove that the language $L=\left\{a^{n} b^{n} a^{n+1} \mid \mathrm{n}=1,2,3, \ldots\right\}$ is nonregular using pumping lemma.
(c) Convert the following CFG into its equivalent CNF:
$\mathrm{S} \rightarrow \mathrm{TU} \mid \mathrm{V}$
$\mathrm{T} \rightarrow \mathrm{aTb} \mid \Lambda$
$\mathrm{U} \rightarrow \mathrm{cU} \mid \Lambda$
$\mathrm{V} \rightarrow \mathrm{aVc} \mid \mathrm{W}$
$\mathrm{W} \rightarrow \mathrm{bW} \mid \Lambda$
Q. 5 (a) Convert the following CFG into its equivalent PDA.
$S \rightarrow A B$
$\mathrm{A} \rightarrow \mathrm{BB}$
$B \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{a}$
$B \rightarrow a \mid b$
(b) Show using the pumping lemma that the following language is not a CFL.
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{i}<\mathrm{j}<\mathrm{k}\right\}$
(c) Draw a Turing Machine that accepts the language $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{a}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ over $\{\mathrm{a}, \mathrm{b}\}^{*}$. Also trace the TM on input string aaabbbaaa.

OR

Q. 5 (a) Define Context Sensitive Language and Context Sensitive Grammar. Write CSG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.
(b) Define - Primitive recursive functions and also give complete primitive recursive derivations for the function, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\operatorname{Add}(\mathrm{x}, \mathrm{y})=$ $x+y$.
(c) Draw a Turing Machine that accepts the language $\left\{\mathrm{xx} \mid \mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$. Also trace the TM on input string aa.

