FirstRanker.com

www.FirstRanker.com

Enrowww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (New) EXAMINATION – WINTER 2019

Subject Code: 2160704

Subject Name: Theory of Computation

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Date: 09/12/2019

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Q.1 (a) Define bijection function. Check whether the function f : Z → Z defined 03 by f(x) = 2x is a bijection function or not. Justify your answer.
 (b) Draw an FA that recognizes the language of all strings containing even no 04 for a string of the string of t
 - of 0's and even no of 1's over $\Sigma = \{0,1\}$. Also write a regular expression for the same language.
 - (c) Write the principle of Mathematical Induction. Prove using mathematical 07 induction that for every $n \ge 0$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

(Consider the sum on the left is 0 for n = 0)

- Q.2 (a) Find regular expression and also derive the words corresponding to the language defined recursively below over $\Sigma = \{a, b\}$.
 - i. $a \in L$
 - ii. For any $x \in L$, xa and xb are elements of L
 - (b) Define Equivalence relation. A relation on the set {1,2,3} is given as R = {(a, b) | a b is an even no}. Check whether R is equivalence relation or not. Give reasons.
 - (c) Give transition table for PDA recognizing the following language and trace 07 the move of the machine for input string abcba:
 L = {xcx^r | x ∈ {a, b}*}

OR

- (c) Give transition table for PDA accepting the language of all odd-length strings over {a, b} with middle symbol a. Also draw a PDA for the same.
- **Q.3** (a) Let FA_1 and FA_2 be the FAs as shown in the figure recognizing the languages **03** L_1 and L_2 respectively. Draw an FA recognizing the language, $L_1 U L_2$.

) Define – Moore machine: Moore Moore Machine:

Old state	After input a	After input b	
Old state	New state	New state	Output
$-q_0$	q_1	q ₂	0
q_1	q ₃	q ₂	1
q ₂	q ₂	q ₃	0
q ₃	q ₃	q ₃	1

(c) Convert the following NFA - Λ into its equivalent DFA that accepts the **07** same language:

- Q.3 (a) Prove that "If there is a CFG for the language L that has no Λ-productions, then there is a CFG for L with no Λ-productions and no unit productions". Support your answer with the help of the following CFG:
 - $S \rightarrow A \mid bb$
 - $A \rightarrow B \mid b$
 - $B \rightarrow S \mid a$
 - (**b**) Write CFG for the following languages :
 - **i.** $\{a^i b^j c^k \mid i = j + k\}$
 - **ii.** $\{a^i b^j c^k \mid j = i \text{ or } j = k\}$
 - (c) Define ambiguous grammar, leftmost derivation. Check whether the following grammars are ambiguous or not. Justify your answer with proper reason.

i.	$S \rightarrow ABA$	ii.	$S \rightarrow A \mid B$
	$A \rightarrow aA \mid \Lambda$		$A \rightarrow aAb \mid aabb$
	$B \rightarrow bB \mid \Lambda$		$B \rightarrow abB \mid \Lambda$

Q.4 (a) Describe the language generated by the following grammars:

- i. $S \rightarrow aA \mid bC \mid b$ $A \rightarrow aS \mid bB$ $B \rightarrow aC \mid bA \mid a$ $C \rightarrow aB \mid bS$ ii. $S \rightarrow aT \mid bT \mid A$ $T \rightarrow aS \mid bS$
- (b) Discuss Nondeterministic Turing Machines and Universal Turing 04 Machines

04

03

rstrackeFinghominimum-state FirstRankey.com language using the minimization algorithm:

(a) Find the CFG for the regular expression : $(011 + 1)^* (01)^*$ 03 0.4 (b) Prove that the language $L = \{a^n b^n a b^{n+1} | n = 1, 2, 3, ...\}$ is nonregular 04 using pumping lemma. (c) Convert the following CFG into its equivalent CNF: 07 $S \rightarrow TU | V$ $T \rightarrow aTb \mid \Lambda$ $U \rightarrow cU \mid \Lambda$ $V \rightarrow aVc \mid W$ $W \rightarrow bW \mid \Lambda$ Q.5 (a) Convert the following CFG into its equivalent PDA. 03 inter.cc $S \rightarrow AB$ $A \rightarrow BB$ $B \rightarrow AB$ $A \rightarrow a$ $B \rightarrow a \mid b$ (b) Show using the pumping lemma that the following language is not a CFL. 04 $L = \{a^{i}b^{j}c^{k} \mid i < j < k\}$ (c) Draw a Turing Machine that accepts the language $\{a^n b^n a^n \mid n \ge 0\}$ over 07 {a, b}*. Also trace the TM on input string aaabbbaaa. OR (a) Define Context Sensitive Language and Context Sensitive Grammar. Write 03 **Q.5** CSG for $L = \{a^n b^n c^n | n \ge 1\}.$ (b) Define - Primitive recursive functions and also give complete primitive 04 recursive derivations for the function, $f: N \rightarrow N$ defined by Add(x, y) = x + y. (c) Draw a Turing Machine that accepts the language $\{xx \mid x \in \{a, b\}^*\}$. Also 07 trace the TM on input string aa.
