

www.FirstRanker.com

Enrolwww.PfrstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019 Subject Code: 2160911 Date: 12/12/2019 Subject Name: Computer Aided Analysis and Design for Electrical Engg. Time: 02:30 PM TO 05:00 PM To to 5:00 P

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) State the performance parameters expected to be outputted on running any O3 Computer Aided Design program.
 - (b) Compare top down and bottom up approaches in CAD programs. State example04 of the same.
 - (c) Explain general procedure to design DC machine optimally drawing flowchart 07 of the same.
- Q.2 (a) State requirements of the high conductive materials
 - (b) Explain properties of low, medium and high hysteresis losses material drawing 04 hysteresis loops of any three materials.
 - (c) Consider the case of a single-phase induction motor seems to draw full load 07 current at 60% of rated load.
 Estimate probable causes for the same.
 Discuss how Finite Analysis helps to improve design to overcome above problem. Describe steps involved in process in brief.

OR

(c) Interpret role of FE Analysis tool in conventional Computer Aided Designing 07 process.

Explain significance and function of followings in respect to FE Analysis:

- i) Meshing
- ii) Boundary conditions
- iii) Static analysis
- iv) Transient analysis
- Q.3 (a)Suggest type of slot winding out of following options:
(A) Integral slot winding (B) Fractional slot winding
For 3 phase, 4 pole, 66 slots armature.
(show calculations and justify your answer in one-two lines)03
 - (b) Discuss the algorithmic steps 3-point starter design 04
 - (c) Illustrate a case of design optimization where FE Analysis of electrostatic field
 07 with appropriate diagrams.

OR

03

U	First	tran	ker's choice www.FirstRanker.com www.FirstRanker.com	า
(Q.3	(a)	State the significance of specific magnetic loading.	03
		(b)	Identify sequential steps for designing a small transformer.	04
		(c)	Evaluate significance of optimal selection Max-Min range of following parameters for distribution transformer. i) kg/kVA ii) Efficiency iii) inrush current iv) Maximum flux density in core.	07
	Q.4	(a)	State criteria for selection of type of armature windings out of Lap or Wave.	03
		(b)	Estimate requirement of dummy coil for following armature winding. 4 pole, 18 slot, double layer is to be designed with wave winding.	04
		(c)	Develop algorithm for design of starting resistance for DC motor.	07
	Q.4	(a)	State the classes of insulation in transformers based on temperature.	03
		(b)	Explain sequential steps for drawing Lap winding diagram.	04
		(c)	Predict the change in performance of DC machine with change in following design parameters:i)Pole arc to pole pitch ratioii)Core flux densityiii)Slots per pole per phase	07
	Q.5	(a)	Develop algorithmic steps for the design of Tank for oil natural air forced type transformer casing.	03
		(b)	Differentiate design criteria for shunt, series and separately excited DC motors.	04
		(c)	Explain significance of different types of enclosures for rotating DC machines.	07
	Q.5	(a)	State standard rating of distribution transformer for LT consumer.	03
		(b)	Develop heat flow diagram in rotating DC machines.	04
		(c)	Illustrate a case of design optimization where FE Analysis of electrostatic field in transformer with appropriate diagrams.	07