GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- VI (Old) EXAMINATION - WINTER 2019

Subject Code: 160602
Date: 16/12/2019

Subject Name: Applied Fluid Mechanics

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Derive an equation in form of friction factor is used to find loss of head due to 07
friction in pipes.

(b) Define Model. Why model study is necessary? Explain Reynolds model law in
detail.
Q. 2 (a) Classify turbines based on direction of flow of water through runner. Also explain main parts of reaction turbine.
(b) Explain graphically longitudinal variation in total head \& the piezometric head at salient points of pipe line.

OR

(b) A trapezoidal channel section has been laid at a longitudinal slope of 1 in 1750 with side slope of 1.5 horizontal to 1 vertical. Calculate bed width \& depth of flow if it carries a discharge of 120 cumecs with depth of flow is 0.7 times its width. Take Manning's coefficient as 0.014 .
Q. 3 (a) Derive equation of total head loss for compound pipe. How one can determine equivalent size of a compound pipe?
(b) Find displacement thickness, momentum thickness and shape factor for the velocity distribution in boundary layer given by

$$
\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y^{2}}{\delta^{2}}\right)
$$

Q. 3 (a) A pipe of diameter 40 cm and length of 2500 m is used for transmission of power 07
by water. The total headd at the inlet of pipe is 500 m . Find maximum power
available at outlet of pipe. Take $\mathrm{f}=0.006$.

(b) | Discuss phenomenon of boundary layer separation. Also explain methods of |
| :--- |
| preventing separation of boundary layer. |

Q. 4 (a) State assumptions made in derivation of dynamic equation of GVF. Also derive $\mathbf{0 7}$ differential equation of gradually varied flow.
(b) Derive expression for specific speed of turbine. What is its significance? $\mathbf{0 7}$

OR

Q. 4 (a) The depth of flow of water at a certain location of a rectangular channel of 2 m wide is 0.5 m . The discharge through channel is 1.5 cumec. Determine whether a hydraulic jump will occur and if so, find its height \& loss of energy per kg of water.
(b) Why pumps are connected in series and in parallel? Write a brief note on multistage pump.
Q. 5 (a) For most economical circular channel section derive condition for maximum velocity \& maximum discharge.
 air foil depends upon mass density (ρ) of medium, velocity of flow (V), characteristics length (d), viscosity (μ) and angle of attach (α).

OR
Q. 5 (a) Draw specific energy curve. Give application of specific energy diagram when $\mathbf{0 7}$ channel with a hump and incoming flow is sub critical.
(b) What do you mean by cavitations? Also explain cavitations in centrifugal pumps $\mathbf{0 7}$ with its precautionary measures.

