GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (OId) EXAMINATION - WINTER 2019

Subject Code: 160704
Date: 11/12/2019

Subject Name: Theory Of Computation

Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain one to one and onto functions with example. Give inverse of the function
(b) Prove $1+2+3+\ldots+n=\left(n^{*}(n+1)\right) / 2$ using Principal of Mathematical Induction
Q. 2 (a) Define Regular Expression.

Find Regular Expression corresponding to each of the following subsets of \{0,1\}*

1) The Language of all strings containing exactly two 0 's
2) The Language of all strings that end with 01
3) The Language of all strings that begin or end with 00 or 11
(b) Draw FAs recognizing following languages,
$\mathrm{L} 1=\{\mathrm{x} \mid 00$ is not a substring of x$\}$
$\mathrm{L} 2=\{\mathrm{x} \mid \mathrm{x}$ ends with 01$\}$
Draw FA accepting the language L1 U L2

OR

(b) Explain Distinguishable strings with example. Draw FA corresponding to a Regular Expression (R.E.) $=(11+110) * 0$, where $\sum=\{0,1\}$
Q. 3 (a) Define NFA - Λ. Give Recursive Definition of δ^{*} for DFA,NFA and NFA $-\Lambda$. 07
(b) Draw NFA recognizing the language ($\left.\{0,1\}^{*}\{10\} \mathrm{U}\{00\}^{*}\{11\}^{*}\right)^{*}$ using 07
kleene's theorem part 1 , where $\sum=\{0,1\}$

OR

Q. 3 (a) Define Pumping Lemma for Regular Languages. Show that following language
(b) Define CFG. Give CFG for $L=\left\{0^{i} 1^{j} 0^{k} \mid j>i+k\right\} \quad 07$
Q. 4 (a) Convert following CFG to Chomsky Normal Form,
(1) $S \rightarrow$ AACD
(2) $\mathrm{A} \longrightarrow \mathrm{aAb} \mid \Lambda$
(3) $\mathrm{C} \rightarrow \mathrm{aC} \mid a$
(4) $\mathrm{D} \rightarrow \mathrm{aDa}|\mathrm{bDb}| \Lambda$
(b) Define PDA. Give DPDA for CFG $\mathrm{S} \rightarrow \mathrm{SS}|[\mathrm{S}]|\{\mathrm{S}\} \mid \Lambda$
Q. 4 (a) Give Bottom Up PDA for following CFG,
(1) $S \rightarrow S+T \mid T$
(2) $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{a} \mid \mathrm{a}$
(b) Prove that following Grammar is an Ambiguous Grammar
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{S}\left|\mathrm{S}^{*} \mathrm{~S}\right|(\mathrm{S}) \mid \mathrm{a}$
Draw parse tree for string a+a*a using above grammar
Q. 5 (a) Draw Turing Machine (TM) accepting Palindrome over $\{\mathrm{a}, \mathrm{b}\}$ 07
(b) Explain following terms

1) P and NP Completeness
2) Time and Space Complexity

OR

Q. 5 (a) Draw Turing Machine (TM) accepting $\left\{\mathrm{SS} \mid \mathrm{S} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ 07
(b) Explain unbounded minimization and μ recursive functions

