FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (Old) EXAMINATION - WINTER 2019

Subject Code: 160704

Time: 02:30 PM TO 05:00 PM

Date: 11/12/2019

Subject Name: Theory Of Computation

Total Marks: 70

07

07

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain one to one and onto functions with example. Give inverse of the function 07 $f: R^+ \rightarrow R^+$, $f(X) = X^2$
 - (b) Prove $1+2+3+...+n = (n^*(n+1))/2$ using Principal of Mathematical Induction 07
- Q.2 (a) Define Regular Expression. Find Regular Expression corresponding to each of the following subset
 - Find Regular Expression corresponding to each of the following subsets of $\{0,1\}^*$
 - 1) The Language of all strings containing exactly two 0's
 - 2) The Language of all strings that end with 01
 - 3) The Language of all strings that begin or end with 00 or 11
 - (b) Draw FAs recognizing following languages, L1 = { x | 00 is not a substring of x } L2 = { x | x ends with 01 } Draw FA accepting the language L1 U L2

OR

- (b) Explain Distinguishable strings with example. Draw FA corresponding to a **07** Regular Expression (R.E.) = (11+110)*0, where $\Sigma = \{0,1\}$
- **Q.3** (a) Define NFA Λ . Give Recursive Definition of δ^* for DFA,NFA and NFA Λ . 07
 - (b) Draw NFA recognizing the language ($\{0,1\}$ * $\{10\}$ U $\{00\}$ * $\{11\}$ *) * using 07 kleene's theorem part 1, where $\sum = \{0,1\}$
 - OR
- Q.3 (a) Define Pumping Lemma for Regular Languages. Show that following language 07 is not a Regular Language using Pumping Lemma L = {0ⁱ1ⁱ | i >=0 }, where ∑ = {0,1}
 (b) Define CFG. Give CFG for L = {0ⁱ1^j0^k | j > i+k }
 07
- Q.4 (a) Convert following CFG to Chomsky Normal Form, 07
 - (1) $S \rightarrow AACD$
 - (2) A \longrightarrow aAb | Λ
 - (3) C \longrightarrow aC | a
 - (4) D \longrightarrow aDa | bDb | Λ
 - (b) Define PDA. Give DPDA for CFG $S \rightarrow SS \mid [S] \mid \{S\} \mid \Lambda$

OR

07

First	trank	ker's choice www.FirstRanker.com	www.FirstRanker.com
Q.4	(a)		07
		(1) $S \rightarrow S+T \mid T$	
		(2) T → T * a a	
	(b)	Prove that following Grammar is an Ambiguous Gram	mar 07
		$S \longrightarrow S + S S^*S (S) a$	
		Draw parse tree for string a+a*a using above grammar	
Q.5	(a)	Draw Turing Machine (TM) accepting Palindrome ove	er {a,b} 07
	(b)	Explain following terms	07
		1) P and NP Completeness	
		2) Time and Space Complexity	

OR

Q.5	(a)	Draw Turing Machine (TM) accepting $\{SS \mid S \in \{a,b\}^*\}$	07
	(b)	Explain unbounded minimization and μ recursive functions	07

www.firstRanker.com