FirstRanker.com

www.FirstRanker.com

Enrolwent. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (Old) EXAMINATION – WINTER 2019

BE - SEMESTER- VI (Old) EXAMIN Subject Code: 160906

Date: 09/12/2019

Subject Name: Theory of Electromagnetics
Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Explain dot product and cross product of two vectors. If the vector field G=y a_x -2.5x a_y +3 a_z and the point Q (4, 5, 2), find the vector component of G at Q in the direction of $a_n = 1/3$ ($2a_x$ + a_y - a_z).	07
	(b)	Find $\nabla \cdot \overline{A}$ and $\nabla \times \overline{A}$ at $P(2,-1,3)$, if $\overline{A} = 2xya_x + za_y + yz^2a_z$.	07
Q.2	(a) (b)	State Coulomb's law of electric for various type of charge distribution Define divergence and its physical significance. OR	07 07
	(b)	Explain boundary condition for dielectric material.	07
Q.3	(a)	State and explain Biot-Savart's law for static magnetic fields as applied to different types of current distribution	07
	(b)	Derive the expression of Electric field intensity (E) due to infinite uniform sheet charge distribution in free space.	07
		OR	
Q.3	(a)	Derive the equation of Electric field intensity (E) due to infinite long line charge located on the Z axis.	07
	(b)	A current element I $\Delta L = 2\pi (0.6 a_x - 0.8 a_y) \mu A$ is situated at a point (4, -2,3). Find the incremental field ΔH at a point (1,3,2).	07
04	(a)	Explain Ampere's circuital law	07
2.1	(u) (h)	Derive the expression curl $H = I$	07
	(~)	OR	01
Q.4	(a)	State and explain Stokes theorem.	07
c	(b)	State and Explain Lorentz force equation on charge particle and explain the concept of magnetic torque	07
05	(a)	Derive Poisson's and Lanlace's equation	07
2.0	(u) (b)	Explain concept of potential gradient and prove that $E = -\nabla V$	07
	(~)	OR	
Q.5	(a)	States explain Gauss's law. Obtain electric field intensity of line charge using Gauss's law	07
	(b)	Write Maxwell equation in point form and in integral form.	07

www.FirstRanker.com