GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- VI (Old) EXAMINATION - WINTER 2019

Subject Code: 161001
Date: 11/12/2019
Subject Name: Digital Communication
Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS
Q. 1 (a) Explain the advantages of digital communication over 07 analog communication.
(b) What is a line code?
Describe the desirable properties of line codes
Q. 2 (a) Draw neat diagram of delta modulator, delta demodulator, 07
input waveform, output waveform and error waveform.
Define slope overload and write the condition to avoid
lope overload in delta modulation.
(b) Derive an equation of signal-to noise ratio for a uniform 07 quantizer.

OR

(b) State Nyquist sampling theorem. Write the condition and 07
name of the circuit to avoid aliasing. Discuss the
applications of sampling theorem.
Q. 3 (a) Explain HDB3 signaling with an example. Draw it PSD. 07
(b) What is a regenerative repeater?
Draw its block diagram and state the function of each block in 2-3 sentences.

OR

Q. 3 (a) Draw neat waveforms of data, carrier and modulated 07
signals for ASK, FSK and PSK modulations. What is the
difference in PSDs of ASK and PSK.
(b) State the Nyquist criterion for zero ISI. Draw time and 07 frequency domain waveforms for the pulse that satisfies this criterion. Define roll-off factor.

Q. 4 (a) Define the following mathematically with reference to
probability and random variables:

Conditional probability, joint probability, CDF, PDF,
Statistical mean, variance, correlation.
(b) State and explain central limit theorem.

OR

Q. 4 (a) Find the mean square value of quantization error in PCM 07 considering uniform random variable approach
(b) Give mathematical expression of Gaussian PDF and CDF. 07 Also, draw the curves for the CDF and PDF of Gaussian random variable. Define Q function and express the probability that Gaussian random variable is greater than some value x in terms of Q function.
 capacity of a Binary Symmetric Channel.
(b) Define following with reference to error detecting and
correcting codes:
Code efficiency, Hamming bound, perfect code, generator
polynomial, interlaced code, code tree, burst error-
detecting/correcting code.

OR

Q. 5 (a) Design an optimum binary receiver and compute error probability for 16-QAM system. Assume all messages are equi-probable and AWGN channel.
(b) Explain the coherent detection of ASK signal with neat diagram, waveforms and relevant expressions.

