

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (Old) EXAMINATION - WINTER 2019

Subject Code: 161001 Date: 11/12/2019

Subject Name: Digital Communication

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Explain the advantages of digital communication over	07
	(b)	analog communication. What is a line code?	07
	(D)	Describe the desirable properties of line codes	U7
Q.2	(a)	Draw neat diagram of delta modulator, delta demodulator, input waveform, output waveform and error waveform.	07
		Define slope overload and write the condition to avoid	
	(b)	lope overload in delta modulation. Derive an equation of signal-to noise ratio for a uniform	07
	(6)	quantizer.	07
OR			
	(b)	State Nyquist sampling theorem. Write the condition and name of the circuit to avoid aliasing. Discuss the	07
0.3	(0)	applications of sampling theorem. Explain HDB3 signaling with an example. Draw it PSD.	07
Q.3	(a) (b)	What is a regenerative repeater?	07 07
	(D)	Draw its block diagram and state the function of each	U7
		block in 2-3 sentences.	
		OR	
Q.3	(a)	Draw neat waveforms of data, carrier and modulated	07
	` ′	signals for ASK, FSK and PSK modulations. What is the	
		difference in PSDs of ASK and PSK.	
	(b)	State the Nyquist criterion for zero ISI. Draw time and	07
		frequency domain waveforms for the pulse that satisfies	
		this criterion. Define roll-off factor.	
Q.4	(a)	Define the following mathematically with reference to	07
		probability and random variables:	
		Conditional probability, joint probability, CDF, PDF,	
	(b)	Statistical mean, variance, correlation. State and explain central limit theorem.	07
	(D)	OR	U1
Q.4	(a)	Find the mean square value of quantization error in PCM	07
ν.,	(4)	considering uniform random variable approach	0,
	(b)	Give mathematical expression of Gaussian PDF and CDF.	07
	` /	Also, draw the curves for the CDF and PDF of Gaussian	
		random variable. Define Q function and express the	
		probability that Gaussian random variable is greater than	
		some value x in terms of Q function.	

FirstRanker.com

Firstranker's (a) to befine information mysteria channel capacity of a Binary Symmetric Channel.

Define following with reference to error detecting and **07** correcting codes: Code efficiency, Hamming bound, perfect code, generator polynomial, interlaced code, code tree, burst errordetecting/correcting code.

OR

Q.5 (a) Design an optimum binary receiver and compute error **07** probability for 16-QAM system. Assume all messages are equi-probable and AWGN channel.

Explain the coherent detection of ASK signal with neat 07 diagram, waveforms and relevant expressions.

MWW.FirstRanker.com