

∲.**₽**îrstRanker.com

RSITY

MARKS

Seat I	10.: <u>-</u>	www.FirstRanker.com	er.co m
Subj	ect C	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER– VII (New) EXAMINATION – WINTER 2019 Code: 2170502 Date: 26/1	1/2019
Subj	ect N	lame: Process Equipment Design -II	
Time	e: 10:	30 AM TO 01:30 PM Total Mar	ks: 70
Instru	ctions		
	1. 1.	Attempt all questions. Make quitable accumptions wherever necessary	
	3.	Figures to the right indicate full marks.	
			MARK
0.1			
Q.1	(a)	Discuss the following: (1) internal design pressure (11) external design	03
	(h)	List the basic mechanical properties which a material should possess	04
	(0)	and explain any three of them?	04
	(c)	Explain in brief about classification of unfired vessel as per IS-2825	07
	(-)	I	
Q.2	(a)	List the various standard flanges and different types of gaskets. Also	03
		draw a neat sketch of any one flange facing.	
	(b)	Discuss the design steps for pressure vessel for Torispherical head	04
		subjected to internal pressure.	07
	(C)	Examine the data given below to evaluate the requirement of reinforcement had for the nozzle opening in cylindrical shell	07
		OD of shell = 2 m. maximum working pressure within shell = 35	
		MN/m^2 , thickness of shell =0.05 m, corrosion allowance = 3 mm, joint	
		efficiency of nozzle and shell = 1, MOC = IS 2002, Allowable stress =	
		96 MN/m ² , Density = 7800 kg/m ³ , OD of nozzle = 0.25 m, Nozzle wall	
		thickness = 0.016 m, length of nozzle = 100 mm.	
	(\mathbf{c})	A towar having 4.5 m inside diameter & 8 m length from tangent line to	07
	(C)	tangent line of the end closers. Tower is operated under vacuum. Tower	07
		shell is constructed from SA-283 grade-B carbon steel plate, which has	
		yield strength of 1898.4 kgf/cm ² . Determine the required thickness of	
		shell without stiffeners. Assume 8 mm thick plate.	
Q.3	(a)	Explain radiography test.	03
	(D)	Discuss in brief about the various types of fabrication technique used for the fabrication of pressure vessel	04
	(c)	Discuss about different types of jackets with neat sketches of each.	07
	(0)	OR	07
Q.3	(a)	Give full form of TEMA ,ASME and HTRI	03
	(b)	Explain in brief the various pressure tests carried out for the design of	04
	(-)	pressure vessel.	07
04	(C)	Discuss about different types of agitators and their selection criteria.	U'/ N2
4.Y	(a)	in a heat exchanger.	03
	(b)	Write in short about the mechanical design of shell and tube heat	04
		exchanger.	

A fixed conical roof storage tank is fabricated from structural steel plate 07 (c) (IS - 2062). Based on the given following data find out the thickness of conical roof plate and size of roof curb angle. Storage tank can be classified as 'Class A Tank'.

FirstRanker.com

n

instrumet		Tank diameter = 7m www.FirstRanker.com www.FirstRanke	www.FirstRanker.com	
		Tank height $= 5m$		
		Slope of conical roof = $1/6$		
		Superimposed live load on roof = $125 \text{ kgf} / \text{cm}^2$		
		Modulus of elasticity of Plate material = $2 \times 106 \text{ kgf} / \text{cm}^2$		
		Density of Plate material = $7800 \text{ kg} / \text{ cm}^3$		
		Poisson's ratio $= 0.3$		
		Thickness of topmost shell course = 10 mm		
		Minimum size of roof curb angle = $65 \text{ mm x} 65 \text{ mm x} 6 \text{ mm}$		
		OR		
Q.4	(a)	Give the function of baffles, tie rod, sealing strip in a heat exchanger.	03	
	(b)	The shell & tube heat exchanger has the following data:	04	
		Shell inside diameter = 580 mm		
		Tube O.D. = 19.05 mm ; Thickness of tube = 1.65 mm		
		Internal operating pressure of shell side = 2.0 kgf/cm^2 ;		
		Internal operating pressure of tube side = 6.0 kgf/cm^2		
		Allowable stress for shell and tube material = 1054 kgf/cm^2		
		Material of shell : SA 312 TP 304 (seamless pipe)		
		Material of tube : SS 304; Density of SS $304 = 8000 \text{ kg/m}^3$		
		J = 1		
		Mean diameter of gasket = 550 mm		
		No. of pass on tube side = 2; Depin of pass partition plate = 5 mm $C_{\rm elevator}$		
		• Inickness of shell		
		• Inickness of tube		
		ose only internal design pressure. Neglect the thickness calculation by		
	(c)	Discuss the various steps used for design of column supported conical	07	
	(C)	roof	07	
05	(2)	What is meant by a bracket? How many brackets are required if vessel	03	
Q	(a)	diameter is $< 5 \text{ m } \& >5 \text{ m}^{?}$	00	
	(b)	Write a short note on Tray supports used for distillation column.	04	
	(c)	Discuss the design of bracket support	07	
	(•)	OR	0.	
0.5	(a)	Answer in True or False for the following statements	03	
C.	. ,	• Short vertical cylindrical vessels are generally supported by		
		bracket support.		
		• Saddle support and Skirt support are same.		
		• Tall vertical vessels are supported by Lug support.		
	(b)	Explain the design procedure for saddle support.	04	
	(c)	Find the thickness of a straight cylindrical skirt support for distillation	07	
		column based on following data.		
		Diameter of column = 2500 mm; Height of distillation column = 40 m;		
		Max. weight of vessel, its attachment & contents = 300000 kg		
		Diameter of skirt =2500 mm; Height of skirt = 5 m; Wind pressure at the		
		top of column =128.5 kgf/m ² ; Material used for skirt support = IS 800		
		structural steel; Max. allowable tensile stress = 1400 kgf/cm^2 ; Max.		
		allowable compressive stress = 666 kgf/cm^2 ; Max. allowable bending		
		stress = 1575 kgf/cm ² ; Seismic coefficient =0.08; Minimum wt of empty		
		vessel = 250000 kg		
