GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- VII (New) EXAMINATION - WINTER 2019

Subject Code: 2170502
Date: 26/11/2019
Subject Name: Process Equipment Design -II
Time: 10:30 AM TO 01:30 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q. 1 (a) Discuss the following: (i) internal design pressure (ii) external design 03pressure (iii) design temperature
(b) List the basic mechanical properties which a material should possess 04and explain any three of them?(c) Explain in brief about classification of unfired vessel as per IS-282507
Q. 2 (a) List the various standard flanges and different types of gaskets. Also 03
draw a neat sketch of any one flange facing.
(b) Discuss the design steps for pressure vessel for Torispherical head 04 subjected to internal pressure.
(c) Examine the data given below to evaluate the requirement of 07 reinforcement pad for the nozzle opening in cylindrical shell. OD of shell $=2 \mathrm{~m}$, maximum working pressure within shell $=3.5$ $\mathrm{MN} / \mathrm{m}^{2}$, thickness of shell $=0.05 \mathrm{~m}$, corrosion allowance $=3 \mathrm{~mm}$, joint efficiency of nozzle and shell $=1, \mathrm{MOC}=$ IS 2002, Allowable stress $=$ $96 \mathrm{MN} / \mathrm{m}^{2}$, Density $=7800 \mathrm{~kg} / \mathrm{m}^{3}$, OD of nozzle $=0.25 \mathrm{~m}$, Nozzle wall thickness $=0.016 \mathrm{~m}$, length of nozzle $=100 \mathrm{~mm}$.
OR
(c) A tower having 4.5 m inside diameter \& 8 m length from tangent line to 07 tangent line of the end closers. Tower is operated under vacuum. Tower shell is constructed from SA- 283 grade-B carbon steel plate, which has yield strength of $1898,4 \mathrm{kgf} / \mathrm{cm}^{2}$. Determine the required thickness of shell without stiffeners. Assume 8 mm thick plate.
Q. 3 (a) Explain radiography test. 03
(b) Discuss in brief about the various types of fabrication technique used for 04the fabrication of pressure vessel.
(c) Discuss about different types of jackets with neat sketches of each. 07
OR
Q. 3 (a) Give full form of TEMA, ASME and HTRI 03
(b) Explain in brief the various pressure tests carried out for the design of 04 pressure vessel.
(c) Discuss about different types of agitators and their selection criteria. 07
Q. 4 (a) Give the function of tube sheet, shell side partition and tube side partition 03in a heat exchanger.
(b) Write in short about the mechanical design of shell and tube heat 04exchanger.
(c) A fixed conical roof storage tank is fabricated from structural steel plate 07(IS - 2062). Based on the given following data find out the thickness ofconical roof plate and size of roof curb angle. Storage tank can beclassified as 'Class A Tank'.

Tank diameter $=7 \mathrm{~m}$
Tank height $=5 \mathrm{~m}$
Slope of conical roof $=1 / 6$
Superimposed live load on roof $=125 \mathrm{kgf} / \mathrm{cm}^{2}$
Modulus of elasticity of Plate material $=2 \times 106 \mathrm{kgf} / \mathrm{cm}^{2}$
Density of Plate material $=7800 \mathrm{~kg} / \mathrm{cm}^{3}$
Poisson's ratio $=0.3$
Thickness of topmost shell course $=10 \mathrm{~mm}$
Minimum size of roof curb angle $=65 \mathrm{~mm} \times 65 \mathrm{~mm} \times 6 \mathrm{~mm}$

OR

Q. 4 (a) Give the function of baffles, tie rod, sealing strip in a heat exchanger.
(b) The shell \& tube heat exchanger has the following data:

Shell inside diameter $=580 \mathrm{~mm}$
Tube O.D. $=19.05 \mathrm{~mm}$;Thickness of tube $=1.65 \mathrm{~mm}$
Internal operating pressure of shell side $=2.0 \mathrm{kgf} / \mathrm{cm}^{2}$;
Internal operating pressure of tube side $=6.0 \mathrm{kgf} / \mathrm{cm}^{2}$
Allowable stress for shell and tube material $=1054 \mathrm{kgf} / \mathrm{cm}^{2}$
Material of shell : SA 312 TP 304 (seamless pipe)
Material of tube : SS 304; Density of SS $304=8000 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{J}=1$
Mean diameter of gasket $=550 \mathrm{~mm}$
No. of pass on tube side $=2$; Depth of pass partition plate $=5 \mathrm{~mm}$
Calculate:

- Thickness of shell
- Thickness of tube

Use only internal design pressure. Neglect the thickness calculation by external design pressure.
(c) Discuss the various steps used for design of column supported conical roof.
Q. 5 (a) What is meant by a bracket? How many brackets are required, if vessel diameter is $<5 \mathrm{~m} \&>5 \mathrm{~m}$?
(b) Write a short note on Tray supports used for distillation column.
(c) Discuss the design of bracketsupport
Q. 5 (a) Answer in True or False for the following statements

- Short vertical cylindrical vessels are generally supported by bracket support.
- Saddle support and Skirt support are same.
- Tall vertical vessels are supported by Lug support.
(b) Explain the design procedure for saddle support.
(c) Find the thickness of a straight cylindrical skirt support for distillation column based on following data.
Diameter of column $=2500 \mathrm{~mm}$; Height of distillation column $=40 \mathrm{~m}$; Max. weight of vessel, its attachment \& contents $=300000 \mathrm{~kg}$ Diameter of skirt $=2500 \mathrm{~mm}$; Height of skirt $=5 \mathrm{~m}$; Wind pressure at the top of column $=128.5 \mathrm{kgf} / \mathrm{m}^{2}$; Material used for skirt support = IS 800 structural steel; Max. allowable tensile stress $=1400 \mathrm{kgf} / \mathrm{cm}^{2}$; Max. allowable compressive stress $=666 \mathrm{kgf} / \mathrm{cm}^{2}$; Max. allowable bending stress $=1575 \mathrm{kgf} / \mathrm{cm}^{2}$; Seismic coefficient $=0.08$; Minimum wt of empty vessel $=250000 \mathrm{~kg}$

