

www.FirstRanker.com

Enrolwent. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER– III (New) EXAMINATION – WINTER 2019 de: 2130608 Date: 30/11/2019

Subject Code: 2130608

Subject Name: Strength of Materials

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1	(a) (b) (c)	Define: (1) Toughness (2) Hardness (3) Fatigue strength Enlist various type of loads and type of supports. Calculate and Draw Shear force and Bending moment diagram of cantilever beam of 4 m span. A load of 10 kN acting at free end and 20 kN is acting at 2m from free end, also UDL 10 kN/m is acting on 2 m from fixed end.	03 04 07
Q.2	(a) (b)	Explain assumption made in theory of pure bending. Derive relation between the rate of loading , shear force and bending moment in a beam.	03 04
	(c)	Draw Shear force and Bending moment diagram for the beam shown in fig 1.	07
	(c)	Find support reaction for the beam shown in fig. 2.	07
Q.3	(c) (a)	Explain the principal planes, principal stresses and natural axis.	03
	(b)	Explain MOHR'S circle of stress?	04
	(c)	A steel bar 1600 mm long is acted upon by forces as shown in fig. 3. Find the elongation of the bar. Take $E = 2 \times 10^5$ N/mm ² .	07
Q.3	(a)	What is Point of Contra flexure? What is its significance?	03
X	(b)	Derive the Torsion equation with usual notations.	04
	(c)	At a certain point in a strained material direct stress of 60 N/mm^2 tensile is acting. Find normal stress, tangential stress and resultant stress on a plane inclined at 30° to the plane of stress. Also verify the same by graphical method.	07
Q.4	(a)	State the Laws of Friction.	03
	(b)	Prove with usual notation the maximum shear stress for a rectangular section is 1.5 times the average shear stress.	04
	(c)	A hollow steel shaft, 3 m of length must transmit a torque of 25 kN.m. The total angle of twist in this length is not to exceed 2.5 ° and the allowable shearing stress in the material is 90 Mpa. Calculate the inside diameter of the shaft and thickness of the metal. $G = 85 \text{ GN/m}^2$. OR	07
Q.4	(a)	Write the assumption for Theory of torsion	03
-	(b)	Draw representative shear stress distribution diagrams for Hollow rectangle, b) I section, c) Hollow circle	04
	(c)	Derive the torsion formula. $\frac{T}{l} = \frac{\tau}{R} = \frac{C\theta}{l}$	07

Q.5

rstrandesr's (a) o befine section wood the straite encortance in bending. FirstRanker.com

- (b) Define :- i) Brittleness ii) Malleability iii) working stress iv) Ductility
- (c) A ladder AB is 4.5m long and 450N weight rests on a rough horizontal floor at end B and vertical wall at A making 60° with horizontal. The coefficient of static friction is 0.4 for all contact surfaces. A man of 800N weight climbs on the ladder. Determine the minimum distance travelled on the ladder, when it is on the verge of slipping.

OR

03

04

07

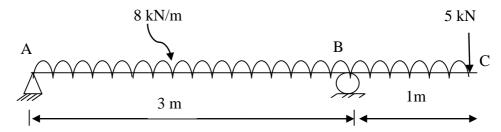
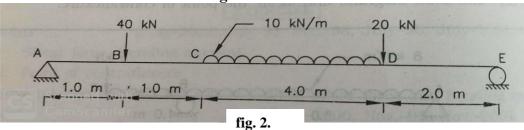
04

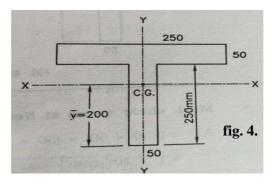
07

(b) State assumption made in the theory of pure bending.

(a) Explain Classification of Materials

(c) A T- section has dimensions shown in fig.4. The section is subjected to shear force of 180 kN. Calculate (i) shear stress at junction of flange & web. (ii) Shear stress at neutral axis. Sketch the shear stress distribution diagram for the section.


fig. 1.

	30mmø	35mmø	e equal to As	
9kN -		4kN 6kN	30mmø]
	500mm	600mm		sh
