irstRanker.com

www.FirstRanker.com

Enrolment.PfrstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VII (New) EXAMINATION - WINTER 2019

Subject Code: 2170908

Subject Name: Switch Gear and Protection

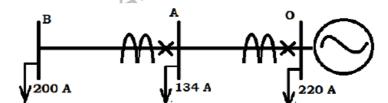
Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Date: 26/11/2019

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.


MARKS

03

- (a) With neat diagram explain the working of shaded pole type 03 0.1 electromagnetic induction disc relay. 04
 - (b) Classify the types of relays with respect to different category.
 - (c) Explain the following protection scheme as applied to synchronous 07 generator:
 - (a) Loss of excitation protection
 - (b) Stator inter-turn fault protection
- Q.2 (a) Discuss the difficulties in implementing HVDC circuit breaker.
 - (b) Explain the behavior of Merz–Price protection during normal load, 04 external fault and internal fault condition.
 - (c) Compare the performance of distance relay in respect of its sensitivity to 07 following:
 - (a) Effect of arc resistance,
 - (b) Effect of power swing
 - Directional property (c)

OR

Select CT ratios and determine the TMS, and Plug setting of the IDMT 07 (c) relays at location O and A, for the over-current protection of radial feeder shown in Fig.1. The characteristic of IDMT relay is given in the Table-2. Minimum fault currents at each point are given Table-1. Maximum load current from each bus are indicated in the Fig.

	Location O			Location A			Location B				
If,Min	3000 A			2000 A			1000 A				
Table-1											
PSM	2	3	3.6	5.5	6	8	10	18			
Top for TMS=1	10	6.2	5	4.25	4	3.5	3	2.1			
Table-2											

- 0.3 (a) Draw logic diagram for implementing 3-step distance protection scheme 03 using impedance relay.
 - (b) Explain the loss of excitation protection as applied to synchronous motor. 04
 - Which are the types of SF6 circuit breaker? With neat diagram, explain 07 (c) the working of Puffer type SF6 circuit breaker.

ND	
UN.	

(a) Explain the line trap units for carrier-aided protection of transmission line. Q.3 03 (b) What are the advantages of carrier current protection scheme? 04

Firstr	anke	with the help of schemetric block here and explain the west in the scheme transformer protection using numerical protection.	.c87
Q.4	(a)	Draw the flow chart for implementing over current protection scheme using numerical relay.	03
	(b)	Differentiate between transfer trip and permissive inter trip.	04
	(c)	Determine the plug setting and % bias setting to permit 25% overload for 50 MVA, 132 kV/66 kV, delta-star transformer. The CT ratios on delta and star side is 300/5 and 1200/5 respectively.	07
		OR	
Q.4	(a)	Explain Slepian's theory of arc interruption.	03
-	(b)	Explain the phenomena of field emission and thermionic emission at the time of contact separation in circuit breaker.	04
	(c)	To obtain complete damping of transient oscillations analyze the critical value of shunt resistance. Also draw transient oscillations for different values of R.	07
Q.5	(a)	Classify the various types of faults and abnormal condition in motors.	03
-	(b)	Explain the application of reverse phasing protection to induction motor.	04
	(c)	Analyze the performance of the CT by drawing its equivalent circuit and vector diagram. Also differentiate between protective CT and measuring CT.	07
		OR	
Q.5	(a)	Define reach, under reach, and over reach of the relay.	03
	(b)	Classify the faults and abnormal operating conditions in synchronous	04

- machine.
 (c) A 50 Hz, 13.6 kV, 3-phase alternator with grounded neutral has inductance of 12 mH per phase and is connected to busbar through a circuit breaker. The capacitance to earth between the alternator and the location of circuit breaker is 0.03μF per phase. Neglect the resistance of the alternator. calculate the following:
 - i) Maximum value of restriking voltage across the contacts of circuit breaker.
 - ii) Frequency of transient oscillations
 - iii) Maximum value of RRRV