FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Seat N	Seat No.: Enrolment No			
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VII (New) EXAMINATION - WINTER 2019				
Subject Code: 2171003 Date:		Code: 2171003 Date: 03/)3/12/2019	
Subject Name: Digital Signal Processing				
Time: 10:30 AM TO 01:00 PM Total M		rks: 70		
Instructions:				
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.		
	<u> </u>	Figures to the right indicate full marks.		
			MARKS	
0.1	(a)	Define the following terms in context of signal processing:	03	
Qui	(u)	 (1) Period of discrete sinusoid, (2) Correlation of signals, (3) ROC of Z-transform. 	00	
	(b)	The system given below have input $x(n)$ and output $y(n)$. $y(n) = \log \{x(n)\}$	04	
		Answer the followings with justification.		
	(c)	Draw & discuss typical block diagram of Digital Signal Processing	07	
	(•)	(DSP). Explain any one example of DSP used in real-time application.	01	
Q. 2	(a)	Explain the following terms in brief:	03	
		(2) Dirichlet's Condition for existence of DTFT.		
	(b)	State the relationship between Z-transform and Fourier transform.	04	
		Determine the step response of the causal system described by the		
		following LCCDE. y(n) = y(n-1) + r(n)		
		Consider $x(n)$ as input and $y(n)$ as output of the system.		
	(c)	Compute the linear as well as circular convolution of following	07	
		sequences:		
		$x(n) = \{1, 2, 0, 1\}$ and $h(n) = \{2, 2, 1, 1\}$ for $0 \le n \le 3$ Comment on the results obtained		
		OR		
	(c)	A liner time-invariant system is characterized by its impulse response	07	
		$h(n) = \left(\frac{1}{2}\right)^n u(n)$		
		Determine the spectrum and energy density spectrum of the output		
		signal when the system is excited by the signal. $(1)^n$		
		$x(n) = \left(\frac{1}{4}\right) u(n)$		
Q.3	(a)	Compute the Z-transform of the following sequence.	03	
		$x(n) = a^{ n }; 0 < a < 1$	_	
	(b)	Draw Direct Form-I and Direct Form-II structures for the following system function:	04	

www.FirstRanker.com

www.FirstRanker.com

$$H(z) = \frac{1 + 0.875z^{-1}}{(1 + 0.2z^{-1} + 0.9z^{-2})(1 - 0.7z^{-1})}$$

- (c) Write down the properties of Z-transforms and prove the followings: 07 (1) Time-shifting property (2) Differentiation property OR (a) Compute the DFT of the following four-point sequence using DFT 0.3 03 matrix. $x(n) = \{0, 1, 2, 3\}$ 04 (b) Consider the signal $x(n) = \left\{-1, 2, -3, 2, -1\right\}$ with Fourier transform $X(\omega)$. Compute the following quantities, without explicitly computing $X(\omega)$. (1) X(0) (2) $X(\pi)$ (3) $\int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$ List out the properties of DFT and prove the followings: 07 (c) (1) Symmetry for real sequence (2) Time reversal Enlist atleast three differences between FIR and IIR Filters. **O.4** (a) 03 (b) Explain the followings in context of Multirate signal processing: 04 (1) Decimation (2) Interpolation Discuss the design of FIR filter using windowing method in brief. 07 (c) OR What do you mean by frequency wrapping? **O.4** 03 (a) (b) Explain the followings in context of DSP processor architecture: 04 (1) MAC (2) Pipelining Discuss design steps of IIR filter using bilinear transformation. 07 (c) Compute the IDFT of the function $X(\omega) = 2\pi \,\delta(\omega)$ 03 **Q.5** (a) (b) Write a short critical note on adaptive filters and discuss any one 04 application of it. Discuss in brief: Radix-2 Decimation-in-Time FFT algorithms. 07 (c) OR Determine the partial-fraction expansion of the proper function 03 **Q.5 (a)** $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$
 - (b) Write a short critical note on Harward architecture of DSP processor.
 (c) Explain in brief: The Goertzel Algorithm.
 07
