www.FirstRanker.com

Enrowww.PirstRanker.com

Date: 26/11/2019

Total Marks: 70

04

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VII (New) EXAMINATION - WINTER 2019

Subject Code: 2171708

Subject Name: Digital Signal Processing

Time: 10:30 AM TO 01:00 PM

FirstRanker.com

ranker's choice

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) How Digital signal processing is better than Analog signal processing? Explain 03 in brief.
 - (b) A discrete time signal is given by

 $x(n) = \{ 2, 1, 1, 2, 1 \}$

sketch the following signal:

(1)
$$x (n+1)$$
 (2) $x (n-2)$

(2) x (n) u (n-1) (4) x (n - 1)
$$\delta$$
 (n - 1)

- (c) A Digital communication link carries binary coded words representing samples 07 of an input signal
 - $x_{a}(t) = 3 \cos 600\pi t + 2 \cos 1800\pi t$

The link is operated at 10000 bits/sec and each input sample is quantized into 1024 different voltage level.

- (a) What is the sampling frequency & folding frequency?
- (b) What is the Nyquist rate for the signal $x_{a}(t)$?
- (c) What are the frequencies in the resulting discrete time signal x (n)?
- (d) What is the resolution Δ ?

Q.2	(a)) Determine the autocorrelation of the sequence				
		$x(n) = \{1, 5, 1, 2\}$				
		\uparrow				
	(b)) Obtain the linear convolution of				
		x (n) = $\{1,2,2,1\}$ h(n) = $\{1,2,1\}$				
	(c)					
		y(n) = 5/6 y(n-1) - 1/6 y(n-2) + x(n) to the input signal				
		$x(n) = \delta(n)$				
		OR				
	(c)) Prove that LTI system is stable if its impulse response is absolutely summable. 0				
		Test the stability of a system where impulse is				
		$h(n) = a^n u(n).$				
Q.3	(a)	Prove that LTI system is causal if its impulse response	03			
		h (n)= 0 for $n < 0$	04			
	(b) Determine if the following discrete time systems are					
		(1) Causal or non causal				
		(2) Linear or non linear				
		(a) $y(n) = \cos x(n)$				
		(a) $y(n) = \cos x(n)$ (b) $y(n) = x(n^2)$				
		(0) j(n) - A(n)				

(c) Determine the inverse Z transform of the following using partial fraction 07 expansion method.

$$X(z) = z^{3}/(z-1)(z-1/2)^{2}$$
 $|z| > 1$

www.FirstRanker.com

R	Fir	stF	Ranker. <mark>com</mark>		
	Firstranker's choice www.FirstRanker.com www.FirstRanke				
	Q.3	(a)	Find the Z transform and sketch ROC of	03	
		(b)	$x(n) = a^n u(n) + \delta(n-3)$ State & prove differentiation property of Z transform.	04	
			Find the inverse Z transform of the following using long division method.	07	
			(1) $X(z) = z / z - 1 z > 1$		
			(2) $X(z) = z / z - a$ if $ z < a $		
	Q.4	(a)	Describe the relationship between DFT & Z- transform.	03	
			Explain linearity & periodicity properties of DFT.	04	
		(c)	The transfer function of a causal LTI system is $H(x) = (1 - x^{1}) / (1 + 2) / (1 - x^{1})$	07	
			$H(z) = (1-z^{-1}) / (1+3/4 z^{-1})$		
			(1) Find the impulse response of the system.		
			(2) Find the output of the system to the input		
			x (n) = $(1/3)^n u(n) + u$ (-n-1) (3) Is the system stable?		
			(3) is the system stable? OR		
	Q.4	(a)	Compute the DFT of the following:	03	
			(1) $x(n) = \delta(n)$		
		(b)	(2) $x(n) = \delta(n - n_0)$ Find the circular convolution of the following sequences:	04	
		(U)	$x (n) = \{1,2,3,4\}$ $h(n) = \{2,1,1,2\}$	04	
		(c)	Consider the LTI system initially at rest, described by the difference equation,	07	
			y(n) = 1/4 y(n-2) + x(n)		
			 (1) determine h(n) of the system (2) Determine direct form. IL percellal form & accords form realization of this. 		
			(2) Determine direct form –II, parallel form & cascade form realization of this system.		
	Q.5	(a)	Explain frequency Aliasing. Write the properties of (a) humming window	03	
		(b)	Write the properties of (a) humming window	04	
			(b) hanning window		
		(c)	Explain bilinear transformation method of designing IIR filter.	07	
	o -		OR	o -	
	Q.5	(a) (b)	Find inverse DFT of $X(K) = \{1,2,3,4\}$ The transfer function of analog filter is	03 04	
		(0)	$H(s) = 3 / (s+2) (s+3)$ with $T_s = 0.1$ sec	V4	
			Design IIR filters using bilinear transformation.		
		(c)	Explain Radix-2 decimation in frequency FFT algorithm.	07	
