FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VII (New) EXAMINATION - WINTER 2019			
Subj	ect	Code: 2173514 Date: 28/11/201	9
Subi	ect	Name: Environmental Reaction Engineering	
Time: 10:30 AM TO 01:00 PM Total Marks: 70			70
Instru	ctior	IS:	
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	з.	Figures to the right indicate full marks.	MARKS
0.1	(a)	Differentiate order and molecularity of a reaction	03
C	(b)	On doubling the concentration of reactant, rate of reaction triples. Find the reaction order.	04
	(c)	Explain how different theories predict temperature dependency of reaction rate	07
Q.2	(a)	Discuss Integral method for analysis of rate data.	03
	(b)	Derive the integrated form of rate expression for Irreversible unimolecular	04
	(a)	type Second order reactions. The helf life neried for a contain first order reaction is 2.5×10^3 and Herrichter	07
	(0)	will it take for $1/4^{\text{th}}$ of reactant to be left behind	07
		OR	
	(c)	A polymerization reaction occurs at constant temperature in a homogeneous	07
		phase. For initial monomer concentrations of 0.3, 0.5 and 0.9 mol/l, 30% of monomer reacts in 40 minutes. Find the reaction rate.	
Q.3	(a)	How overall order of a reaction can be estimated from half-life method?	03
	(b)	What is variable volume reactor	04
	(c)	Prove that for a first order reaction N-CSTRs connected in series will approximate to the behavior of PFR.	07
0.2	(a)	Specify how holding time and specetime varies for flow resetors	02
Q.3	(a) (h)	In an isothermal batch reactor 70% of reactant A is converted in 13 minutes	03
	(0)	Find the space time and space velocity to effect this conversion in a plug flow	04
		reactor assuming first order kinetics.	
	(c)	Discuss the case of qualitative product distribution and concentration levels	07
		to be maintained in case of parallel competing unimolecular reactions of	
0.4	(\cdot)	desired and undesired reactions considering their order.	03
Q.4	(a) (b)	How E curve can be determined though pulse input experiments?	03 04
	(D) (C)	Calculate the mean residence time for a reactor from following data	07
	(0)	$\begin{bmatrix} t, min & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$	07
		E, min ⁻¹ 0 0.02 0.10 0.16 0.20 0.12 0.08 0.03 0	
		OR	
Q.4	(a)	What should be essential properties a catalyst?	03
	(b)	Write the steps involved in a Catalytic reaction.	04
	(c)	Synthesize a rate law for the decomposition of Cumene to form benzene and	07
		propylene considering that surface reaction is rate limiting step.	

Figsander Mehthon Fick's first www.firstframer.com the contribution Fick's first www.firstframer.com 03 mixture to its total flux

- (b) What is meant by Mass transfer boundary layer thickness?
- (c) Calculate the mass flux of reactant A to a single catalyst pellet of 1 cm in diameter suspended in a liquid. The reactant is placed in dilute concentrations and reaction is considered to take place instantaneously at external pellet surface. The bulk concentration of reactant is 1 M and free system liquid velocity is 0.1 m/s. The kinematic viscosity is 0.5 cS and the liquid diffusivity is 10^{-10} m²/s.

OR

- (a) What is Thiele Modulus? Specify the importance of this factor in a catalytic 03 Q.5 reaction.
 - (b) Discuss the correlation between Effective diffusivity and tortousity 04
 - (c) Correlate the time needed for complete conversion of a spherical particle 07 considering that chemical reaction is rate governing step in shrinking core model.

www.FirstRanker.com

04