Enrolment M.FirstRanker.com www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VII (New) EXAMINATION - WINTER 2019

Subject Code: 2173612

Firstranker's choice

Subject Name: Fundamentals of Reaction Engineering

Time: 10:30 AM TO 01:00 PM

FirstRanker.com

Total Marks: 70

MARKS

04

03

Date: 30/11/2019

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 Explain the temperature dependent term of rate equation from Arrhenius law. 03 **(a)**
 - The half-life period of a reaction of the first order is 2500 second. How long will 04 **(b)** it take for 1/4 of the reactant to be left behind? 07
 - Explain the classification of reaction with proper example of each type. (c)
- On doubling the concentration of reactant, the rate of reaction triples. Find the Q.2 **(a)** 03 reaction order
 - Derive the integrated form of rate expression for Irreversible bimolecular type **(b)** 04 First order reactions.
 - Show that decomposition of N_2O_5 at 67 ^{0}C is a first order reaction. Calculate the (c) 07 value of rate constant

Time, min	0	1	2	3	4				
C (N2O5) mol/l	0.16	0.113	0.08	0.056	0.04				
OR									

- The elementary II-order liquid phase reaction $A + B \rightarrow C + D$ is conducted 07 (c) isothermally in PFR. The volumetric flow rate is 10 m³/hr and $C_{A0} = C_{B0} = 2$ mol/m³. Find out the volume of PFR needed to achieve 50% conversion of A. Take the value of rate constant K = $5 \text{ m}^3/\text{mol.hr}$.
- Derive the integrated rate equation for zero order reaction for a variable volume 03 **Q.3** (a) system.
 - Discuss Differential method for analysis of rate data. **(b)**
 - This reaction is carried out at 422.2 K at a total pressure of 10 atm with 50% A 07 (c) and remaining 50% inerts. If volumetric feed rate is 6 dm³/sec. Calculate the volume necessary to achieve a conversion level of 80% in a CSTR.

Conversion, x	0	0.2	0.4	0.6	0.8
- r_A , (mol/dm ³ ·S)	0.0053	0.005	0.004	0.0025	0.00125
	•	OR		•	

- 0.3 Define and explain the Space time and space velocity for flow reactors. **(a)**
 - Consider a gaseous feed $C_{A0} = 100$, $C_{B0} = 200$ enters an isothermal reactor. For **(b)** 04 $X_A = 0.8$ find the C_A , C_B and X_B .
 - Discuss with suitable sketches the different types of continuous reactor systems 07 (c) used in process industries
- Discuss the size comparison for mixed flow and plug flow reactor for first order 03 **Q.4** (a) and second order reactions.
 - Liquid A decomposes by first order kinetics in an isothermal batch reactor 50% 04 **(b)** of A is converted in 300 sec, find the time required for the 75% conversion of A in the same reactor.
 - Prove that for a first order reaction N-CSTRs connected in series will approximate 07 (c) to the behavior of PFR.

OR

G r <u>a</u> t	rank	What is Chemical Equilibrium Mention the characteristics of chemical	03				
·		Equilibrium					
	(b)	Explain standard heat of formation, standard heat of combustion and standard heat of reaction					
	(c)	Enzyme E catalyzed the fermentation of substrate A to product R find the size of the MFR for 95% conversion of reactant, in a feed stream of 25 lit/min of reactant (2 mol/lit), and enzyme kinetics is $-r_A = 0.1 C_A/(1+0.5C_A)$	07				
Q.5	(a)	Write a short note on Optimum temperature progression?	03				
-	(b)	Explain the effect of temperature on equilibrium conversion as predicted by thermodynamics by keeping pressure fixed.	04				
	(c)	Synthesize a rate law for the decomposition of Cumene to form benzene and propylene considering that surface reaction is rate limiting.	07				
		OR					
Q.5	(a)	Write a short note on classification of Catalysts.	03				
-	(b)	Explain the role of modifier, promoter and inhibitor in a catalytic reaction.	04				
	(c)	With the help of a sketch mention the seven steps involved in a catalytic reaction.	07				

www.firstRanker.com