\qquad

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 2131404

Date: 03/12/2019

Subject Name: Food Engineering Thermodynamics Time: 02:30 PM TO 05:00 PM

 Instructions:1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Standard Steam Tables and normal range Psychrometric Chart can be used
Q. 1 (a) Why gases deviate from ideal behavior? A 50 liters capacity vessel contains 03 CO_{2} gas at $77^{\circ} \mathrm{C}$ and 3 bar pressure. Calculate the mass of CO_{2} in kilogram.
(b) Two kilogram of methane gas was injected into a 100 liter vessel containing nitrogen at 0.9 bar absolute pressure and $27^{\circ} \mathrm{C}$ under isothermal conditions. Calculate the partial pressure of methane gas and the total pressure in the container in bar. [$\mathrm{M}=16 \mathrm{~g} / \mathrm{mol}$]
(c) Answer the following:
i. Explain the law of corresponding states.
ii. Write Van der Waal's gas equation and give SI units.
iii. Define open system.
iv. If vacuum is 600 mmHg , calculate absolute pressure in kPa .
v. Calculate the specific gas constant for a gas mixture containing $80 \% \mathrm{~N}_{2}$ and $20 \% \mathrm{O}_{2}$ by weight.
vi. Name different types of thermometers.
vii. Show that $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\bar{R}$ for ideal gases?
Q. 2 (a) State Zero ${ }^{\text {th }}$ law of thermodynamics. Discuss different temperature scales and their interrelationships.
(b) Ten kilogram of O_{2} gas is heated reversibly at constant pressure from an initial state of $[\mathrm{T}=330 \mathrm{~K}, \mathrm{P}=1.6 \mathrm{bar}]$ until its volume doubles. Calculate
(i) The expanded work in kJ
(ii) Change in internal energy and enthalpy in kJ .
[Take $\mathrm{Cp}=35 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{k}$]
(c) State first law of thermodynamics for a closed system. Ten kilogram of an ideal gas at $113^{\circ} \mathrm{C}$ and 8 bar pressure expands isentropically four times its initial volume. Calculate the work done during the process in kJ .
$\left[\mathrm{C}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{\mathrm{v}}=0.715 \mathrm{~kJ} / \mathrm{kgK}\right]$
OR
(c) Derive SFEE for a fluid stream entering and leaving a turbine in terms of work and energy transfer per unit mass. Specify the assumptions made.
Q. 3 (a) What is Gibb's phase rule? Calculate the degrees of freedom of water at its 03 triple point.
(b) Calculate the approximate pressure at which water would boil at $180^{\circ} \mathrm{C}$. It is known that water boils at $100^{\circ} \mathrm{C}$ at 1.01325 bar. [Take $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$, $\mathrm{h}_{\mathrm{fg}}\left(\right.$ at $\left.100^{\circ} \mathrm{C}\right)=2258 \mathrm{~kJ} / \mathrm{kg}$]
(c) Explain Joule-Kelvin effect with the help of a T-P diagram.
Q. 3 (a) What is Gibb's phase rule? Calculate the degrees of freedom of water at its 03
critical point.

$$
\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}^{W}
$$

(c) Prove that for any gas undergoing a throttling process, the Joule-Kelvin
coefficient is given by $\mu_{j, T}=\frac{1}{C_{P}}\left[T\left(\frac{\partial v}{\partial T}\right)_{P}-v\right]$
Q. 4 (a) Explain Carnot cycle showing all the state points and explain the significance of this cycle.
(b) Explain the following:
(i) Clausius inequality.
(ii) Thermal reservoirs
(c) Explain Kelvin-Plank and Clausius statements of second law of $\mathbf{0 7}$ thermodynamics \& prove that they are in fact equivalent.

OR

Q. 4 (a) Explain the concept and importance of available and unavailable energy 03
(b) Prove that $\oint\left(\frac{d Q}{T}\right)<0$; for any cyclic irreversible process.
(c) Explain Clausius statement of second law of thermodynamics. A heat pump is operating between $-5^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. It delivers a COP which is 50% of the maximum possible COP. If it is delivering 5 kW of heat into the warm room, calculate the power requirement to drive the unit.
Q. 5 (a)

Prove that specific humidity of moist air is given by $\omega=0.622\left(\frac{p_{w}}{p_{o}-p_{w}}\right)$
(b) The weather report on a certain date was recorded as given below:
A. Atmospheric pressure $=760 \mathrm{~mm} \mathrm{Hg}$
B. Ambient Temperature $=38^{\circ} \mathrm{C}$
C. $\mathrm{RH}=60 \%$

Using Psychrometric Chart, calculate the DPT, WBT, Specific enthalpy and absolute humidity of the atmospheric air.
(c) Explain P-V and T-s phase diagram of a pure substance (water). Using Steam

Tables determine the following for saturated steam at 2 MPa pressure:
(i) Saturation temperature in ${ }^{\circ} \mathrm{C}$
(ii) Entropy in $\mathrm{kJ} / \mathrm{kg}$ K
(iii) Latent heat of vaporization in $\mathrm{kJ} / \mathrm{kg}$
(iv) Specific volume in $\mathrm{m}^{3} / \mathrm{kg}$

OR

Q. 5 (a) Define the following terms for moist air:
(i) Wet bulb temperature
(ii) Relative humidity
(iii) Dry bulb temperature
(b) Air at a certain place is at $40^{\circ} \mathrm{C}$ abd has a barometric pressure of 1 bar. If p_{w} of water vapours present in the air is 20 mm Hg , calculate the following:
i. DBT
ii. Specific humidity
iii. Relative humidity
iv. DPT
(c) Explain phase diagram of a pure substance (water) on a P-v diagram. Ten kg of wet steam at $120^{\circ} \mathrm{C}$ containing 80% of dry steam is allowed to completely condense to water at $92^{\circ} \mathrm{C}$. Calculate the amount of heat released in kJ.

