FirstRanker.com

www.FirstRanker.com

CULARAT TECHNOLOGICAL UNIVERSITY

		RF - SEMESTER_ VIII (New) FYAMINATION _ WINTER 2010	
Subject Code: 2180103 Date: 21/11/2019 Subject Name: Space Dynamics			010
			019
			=0
Time: 02:30 PM TO 05:00 PM Total Marks: 70			70
Instructions:			
		 Attempt all questions. Make suitable assumptions wherever necessary. 	
		3. Figures to the right indicate full marks.	
		5. Figures to the right indicate full marks.	MARKS
Ο1	(\mathbf{a})	Is there provide in space 9 Justify	02
Q.1	(a) (b)	Explain Newton's law of gravitation in datail	03
	(\mathbf{D})	Define Space Classify types of space yehicles	04
	(C)	Define Space. Classify types of space venicles.	07
Q.2	(a)	Explain Mechanics of Circular Orbit.	03
	(b)	State and Prove Kepler's 3 rd law.	04
	(c)	With neat sketch explain different types of space trajectories.	07
		OR	
	(c)	Explain The Two body problem.	07
Q.3	(a)	State and Prove Kepler's 2 nd law.	03
	(b)	Explain Zero potential energy configurations.	04
	(c)	Derive Orbit equation.	07
		OR	
Q.3	(a)	What is Escape Velocity? Calculate the same for an object escaping from the	03
		earth's surface.	
	(b)	Write a note on Elliptic orbit.	04
	(c)	With neat sketch explain The Hohmann transfer ellipse.	07
Q.4	(a)	What is Attitude maneuvering?	03
	(b)	Why the stability of Satellite is very important? Write methods for stability	04
		control of satellites.	~-
	(c)	What are the major sources of Attitude disturbance torques? Explain any one in	07
		detail.	
04	(9)	Establish a relation between Impulse and change in momentum	03
V .1	(\mathbf{a})	What do you mean by Dual spin satellite? Explain the functions of Rotor &	03
	(0)	Platform with labeled diagram	04
	(c)	Write a short note on Yo-Yo Mechanism	07
Q.5	(\mathbf{c})	What is (a) Re-entry corridor (b) Overshoot boundary & (c) Undershoot	03
	(4)	houndary?	00
	(b)	How Re-entry is more important in (a) Ballistic missiles (b) Planetary entry	04
	(~)	probes & (c) Manned spacecraft.	•••
	(c)	Explain Motion of Re-entry objects using Motion Analysis Process (MAP).	07
	(-)	OR	~ •
0.5	(a)	How re-entry mission is designed? Explain using block diagram.	03
χ.υ	(b)	What are the functions of (a) Heat Shield & (b) Back Shell?	04
	(c)	Compare a study between Sphere, Cone & Blunted cone. And prove using	07
	、 /	parameters like Deceleration, Heat rate, Accuracy why Blunted cone shape is	
		preferable for Re-entry vehicle design.	
