GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 2131704
Date: 3/12/2019
Subject Name: Digital Logic Circuits
Time: 02:30 PM TO 05:00 PM
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1	(a) What is Race condition?		$\mathbf{0 3}$
	(b) Define : 1) Fan in	2) Fan out	$\mathbf{0 4}$
	3) Propagation Delay	4) Noise margin	
	(c) State and Prove De Morgan's theorem.	$\mathbf{0 7}$	

Q. 2 (a) Write a short note on PLA. 03
(b) Convert the following 04
i. Decimal number 256 to Hexadecimal equivalent.
ii. Decimal number 648 to octal equivalent.
(c) Draw logic diagram, symbol and characteristic table for JK flip-flop. $\mathbf{0 7}$

OR
(c) Explain positive edge-triggered D flip-flop. 07
Q. 3 (a) Explain state table, state diagram with example. 03
(b) Design full subtractor using half subtractors. 04
(c) With the help of a neat diagram, explain the working of a two-input TTL 07 NAND gate.

OR
Q. 3 (a) Realize Ex-OR gate and NOT gate using NOR gate. 03
(b) Reduce the expression: 04
I. $\mathrm{A}[\mathrm{B}+\overline{\boldsymbol{C}}(\overline{\boldsymbol{A B}+\boldsymbol{A} \overline{\boldsymbol{C}}})]$
II. $(\overline{\boldsymbol{A}+\overline{\boldsymbol{B}} \bar{C}})(\mathrm{A} \overline{\boldsymbol{B}}+\boldsymbol{A B C})$
(c) Explain BCD-to-Seven segment decoder. 07
Q. 4 (a) Draw neat diagram of 3×8 decoder circuit. 03
(b) Simplify the Boolean function using K-map: 04
$F(w, x, y, z)=\sum m(0,1,2,4,5,6,8,9,12,13,14)$
(c) Explain with logic diagram of 4-bit serial-in serial-out shift register. $\mathbf{0 7}$

OR
Q. 4 (a) Write a short note on shift register. 03
(b) Write a short note on Arithmetic micro operation in detail. 04
(c) Explain 4-bit ring counter with circuit diagram and waveforms. 07
Q. 5 (a) Convert SR flip-flop into T flip-flop. 03
(b) Draw neat diagram of 2-bit magnitude comparator circuit. $\mathbf{0 4}$
(c) Write the state table and state equation with the state diagram of clocked D $\mathbf{0 7}$
flip-flop.
flip-flop.
OR
Q. 5 (a) Explain 2 bit binary UP counter using JK flip-flops. 03
(b) Distinguish between combinational and sequential switching circuits. 04
(c) Explain Successive Approximation ADC. $\mathbf{0 7}$

