

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VIII (New) EXAMINATION - WINTER 2019
Subject Code: 2180610
Date: 2

Subject Name: Design of Steel Structures			Date: 29/11/2019	
		2:30 PM TO 05:30 PM Total Marks: 7	0	
	1. 2. 3.	Attempt all questions.		
Q.1	(a) (b) (c)	Explain Lateral load due to Wind and Seismic as per I.S. Standard. Explain effect of wind load on structure. A beam ISLB 300 is connected to a flange of column ISHB 300 to transmit end reaction of 150 kN due to factored loads. Design web angle connection using M 20 bolts of 4.6 grade and steel Fe 415.	03 04 07	
Q.2	(a) (b) (c)	Explain the analysis of roof column in Industrial building. Enlist different types of connections and explain any one with sketches. A beam ISMB 400 transfers an end reaction of 160 kN (factored) to the flange of column ISHB 300 @577 N/m .Design an unstiffened welded seat connection.	03 04 07	
	(c)	OR Design a Stiffened seat for a section of 200 kN from beam of ISMB 300. This beam has to be connected to a column of size ISHB 200. Assume Fe 410 grade steel and shop welding.	07	
Q.3	(a) (b) (c)	Explain the role of bracing in industrial buildings. Explain the design procedure for bearing bolts subjected to eccentric loading. Describe design procedure for Gantry girder. OR	03 04 07	
Q.3	(a) (b) (c)	Explain elastic buckling and bending in plane of web. Write various types of truss girder. A fixed beam of 6 m span carries a uniformly distributed load of 175 kN/m over the left half of the span. Determine the fully plastic moment for the beam. Also calculate plastic section modulus required fy=250 MPa.	03 04 07	
Q.4	(a)	For analysis of Industrial building bends for column hinged at base, What are	03	
	(b) (c)	the assumption normally made. Define Shape factor and Collapse load. Design an angle section for a purlin having 3.0 m span . It carries design load (working) of 2.5 kN/m and supported on four supports. Angle of roof truss is 26°.	04 07	
ΩA	(a)	OR What are the applications of plate girder	03	
Q.4	(a) (b) (c)	What are the applications of plate girder. Explain pre -buckling and post -buckling behavior of web plate. A simply supported welded plate girder of span 25 m is subjected to service load of 60 kN/m UDL and two fixed point loads of of 250 kN each spaced at 8.5 m from each supports. Design stiffener under concentrated load for plate girder. Apply curtailment of flanges.	03 04 07	
Q.5	(a)	Enlist advantages and disadvantages of steel structures.	03	

04

(b) What are the components of Truss Girder Bridges?

FirstRanker.com

Firstranker.com carry out the checks. A simply supported gantry girder to carry two electric ally overhead crane travelling with following details.

- 1. Crane capacity = 200 kN
- 2.Self weight of crane girder =180 kN
- 3. Wheel spacing =3.2 m
- 4. Weight of crab = 50 kN
- 5. Span of crane between rails = 16 m
- 6.Minimum edge distance = 1.2 m
- 7. Minimum spacing between cranes = 2.0 m
- 8. Span of gantry girder = 8 m
- 9. Self weight of rail section= 0.5 k N/m
- 10.Height of rail section =75mm

OR

(a) What is a foot bridge? What is the popular geometry of the foot bridge? 03 Q.5

(b) Draw sketches for any two forms of Gantry girder. 04

(c) Analysis a steel foot bridge for the following data: 07

Type of truss: Pratt

Span: 35 m

Width of walk way: 3 m,

Truss height = 3.5 m

Flooring: RCC slab 120 mm with finishing 20 mm thick.

Live Load: 5 kN/m²

Assume Suitable data if required.

www.FirstRanker.com