

www.FirstRanker.com

Enro WWW.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VIII (New) EXAMINATION - WINTER 2019

Subject Code: 2182002

Date: 29/11/2019

Subject Name: Automated Manufacturing - II

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Q.1 (a) Compare the parameters for given task to a human operator and a 03 robot.
 - (b) Enlist different elements of robot with neat sketch and explain any 04 two of them.
 - (c) Consider Schematic of a 3-DOF polar arm shown in figure 1. Using 07 D-H notation Construct
 - 1. Set of robotic coordinate frame, 2. A table for joint parameter
 - 3. Each joint individual matrix

Fig.1. 3DOF Polar Arm

Q.2	(a)	Evaluate "Accuracy is an absolute concept, repeatability is relative".	03
	(b)	Classify the various types of grippers used in robot and explain	04
	(\cdot)	Cive suits his supervises of succession southers in dustry has died suith the	07
	(C)	Give suitable example of quality control in industry nandled with the	07
		help of robotic vision system. Describe the set up and other	
		requirements with the help of appropriate diagrams.	
		OR	
	(c)	Why robot is called 24×7 worker? What is major advantage of a robot?	07
Q.3	(a)	Explain tactile sensors used in a robot.	
C	(b)	Write a short note on a robot used in spray painting application.	04
	(\mathbf{c})	Explain the rank order clustering techniques to the part-machine	07
	(0)	incidence matrix	07
		OR	
Q.3	(a)	What are the objectives of cellular manufacturing?	03
	(h)	Explain the working principle of Hollier Method in deciding the	04
	(~)	sequence of machines and material flow	•••
	(c)	What is the part family in GT? Explain the design attribute and	07
	(C)	manufacturing attribute in GT	07
04	(9)	Explain the poly code in group technology	03
V	(\mathbf{a})	List the different flexibilities associated with EMS. Explain any two	0.0
	(U)	in bailef	04
	(c)	Basic Structure of the Opitz Parts Classification and Coding System.	07

strai	iker	s choice www.FirstRanker.com www.FirstRanke	er com		
Q.4	(a)	Explain the concept of composite job in GT	03		
•	(b)	Difference between FMC and FMS.	04		
	(c)	What is CIM? Explain with neat sketch CIM wheel?	07		
Q.5	(a)	Compare the different manufacturing system with respect to	03		
		flexibility and production quantity.			
	(b)	What are the advantages of Group Technology	04		
	(c)	Differentiate between MRP I and MRP II	07		
		OR			
Q.5	(a)	Enlist the limitation of FMS.	03		
	(b)	Explain the input parameter of MRP I system	04		
	(c)	A flexible machining system consists of load/unload station and two 07			
		machining work stations. Station 1 is the load/unload station. Station			
		2 performs milling operations and consists of two servers (two			
		identical CNC milling machines). Station 3 has one server that			
		performs drilling (one CNC drill press). The stations are connected by			
		a part handling system that has four work carriers. The mean transport			
		time is 3.0 min. the FMS produces two parts, A and B. the part mix			
		fractions and process routings for the two parts presented in the table			
		below. The operation frequency f_{ijk} = 1.0 for all operations. Determine			
		(a) maximum production rate of FMS, (b) corresponding production			

rates of each product, (c) utilization of each station and, (d) number of busy servers at each station.											
Part j	Part mix	Operation	Description	station i	Process						
	\mathbf{p}_{j}	k			time						
					t _{ijk} (min)						
Α	0.4	1	LOAD	1	4						
		2	MILL	2	30						
		3	DRILL	3	10						
		4	UNLOAD	1	2						
В	0.6	1	LOAD	1	4						
		2	MILL	2	40						
		3	DRILL	3	15						
		40	UNLOAD	1	2						
www.											